

New Threading Tools

MMTseries

THREAD PITCH CROSS REFERENCE

Application			General r	machining		Pipe fittings a for gas a	nd couplings nd water	
Turo		Partial Profile 60°	Partial Profile 55°	ISO Metric	American UN	Parallel Pipe Thread Whitworth for BSW, BSP	American NPT	
Туре		60°	55°	1/8P 60°	1/8P 60°	R=0.137P 55° R=0.137P	30° 30°	
Symbol		M UNC UNF	W	M	UNC UNF	G(PF)* W	NPT	
Holder	Pitch	mm (thread/inch)	thread/inch	mm	thread/inch	thread/inch	thread/inch	
MMT Holder	Full form	_	_	0.5 2.5 0.75 3.0 1.0 3.5 1.25 4.0 1.5 4.5 1.75 5.0 2.0	32 12 28 11 24 10 20 9 18 8 16 7 14 6 13 5	28 11 26 10 20 9 19 8 18 7 16 6 14 5	27 18 14 11.5 8	
26		_	_	MMT16EROOISO-S P11	MMT16EROOUN-S © P11 MMTOOEROOUN © P15	MMT16EROOW-S P11	MMTOEROONPT	
	Partial form	0.5 -1.5(48-16) 1.75-3.0(14-8) 0.5 -3.0(48-8) 3.5 -5.0(7-5)	48-16 14- 8 48- 8 7- 5	0.5 -1.5 1.75-3.0 0.5 -3.0 3.5 -5.0	48-16 14- 8 48- 8 7- 5	-	-	
MMTEROCO-C		MMT16ER 60-S → P11 MMT ○ ER 60 → P13	MMT16ER055-S © P11 MMT00ER055 © P13		MMT○ER○○60 P13	_	-	
MMT Boring Bars	Full form	_	_	0.5 2.5 0.75 3.0 1.0 3.5 1.25 4.0 1.5 4.5 1.75 5.0 2.0	32 12 28 11 24 10 20 9 18 8 16 7 14 6 13 5	28 11 26 10 20 9 19 8 18 7 16 6 14 5 12	27 18 14 11.5 8	
		_	_	MMT©OIR©©OISO-S P12 MMT©OIR©©OISO P14		MMT16IROOOW-S P12	MMTOIROONPT	
•	Partial form	0.5 -1.5(48-16) 1.75-3.0(14-8) 0.5 -3.0(48-8) 3.5 -5.0(7-5)	14- 8 48- 8 7- 5	0.5 -1.5 1.75-3.0 0.5 -3.0 3.5 -5.0	48-16 14-8 48-8 7-5	-	-	
MMTIR○A○16-C □ P10		MMT16IR 60-S P12 MMT OIR 60 P14			MMTOIROG60	_	_	

Steam, water lir	gas and ne pipes	Pipe couplings for food and fire fighting industries	Motion trar	nsmissions	Aircraft and aerospace	Oil and	d gas
Taper Pipe Thread BSPT	American NPTF	Round DIN 405	ISO Trapezoidal 30°	American ACME	UNJ	API Buttress Casing	API Round Casing & Tubing
R=0.137P 27.5° 27.5° R=0.137P	30° 30°	R=0.22105P R=0.25597P 30° R=0.23851	30° 0.366P	29° 0.3707P	1/8P 60° R=0.18042P	10° 3° ° 1	30° 30°
R.Rc(PT) Rp(PS)	NPTF	Rd	Tr (TM)	ACME (TW)	UNJ	BCSG	CSG LCSG
thread/inch	thread/inch	thread/inch	mm	thread/inch	thread/inch	thread/inch	thread/inch
28 19 14 11	27 18 14 11.5 8	10 8 6 4	1.5 2.0 3.0 4.0 5.0	12 10 8 6 5	32 16 28 14 24 12 20 10 18 8	5	10 8
MMT16ERCCCBSPT-S P11 MMTCCERCCCBSPT P15	MMTOCEROCONPTF P17	MMTOEROORD P15	MMTOCEROCTR P17	MMTOEROCACME	MMTOEROUNJ	MMT22ER050APBU	MMT16EROOAPRD
_	-	-	-	_	-	-	-
_	_	_	_	_	_	_	_
19 14 11	14 11.5 8	10 8 6 4	1.5 2.0 3.0 4.0 5.0	12 10 8 6 5	*	5	10 8
MMT16IRCCBSPT-S P12 MMTCCIRCCBSPT P16		MMTOIROORD	MMTOIROOTR	MMTOIROGACME P18	_	MMT22IR050APBU	MMT16IROCAPRD
_	_	-	-	_	-	_	_
_	_	_	-	_	_	_	_

Note) When machining an internal UNJ thread, cut an internal hole with the appropriate diameter. Then machine with 60° American UN. In this case, a full form type insert cannot be used.

Note) For Pipe Threads, the list above contains both new and old symbols. Symbols in brackets are the old type.

R: Male Taper Thread, Rc: Female Taper Thread, Rp: Female Parallel Thread

Female Parallel Thread defined with Rp(PS) is used for Male (Apr.)

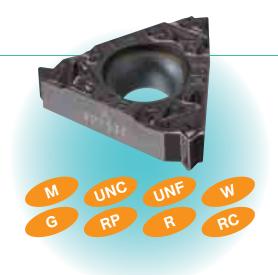
It is different from Female Parallel Pipe Thread defined with G(PF).

New Threading Tools

M-class inserts with 3-D chip breakers

Features

EXCELLENT CHIP CONTROL


Latest chip breaker design improves efficiency by ensuring good chip control.

PREVENTS VIBRATION AND BURRS

The new chip breaker allows smoother cutting to reduce vibration. Additionally, less tearing of the work material means less burrs.

MOULDED IDENTIFICATION MARKS

The type and pitch of the insert is moulded onto the top of the insert for easy recognition of each thread type.

Cutting Performance

Chip control comparison

ISO metric external thread pitch 1.5mm Final pass (6th pass)

Ideal chip control even in the latter half of passes when continuous chips are usually produced.

<Cutting conditions>

Workpiece : Alloy steel
Insert : MMT16ER150ISO-S
Grade : VP15TF
Cutting speed : 120m/min
Cutting method : Radial infeed
Depth of cut : Fixed cut area

Pass : 6 times Coolant : WET

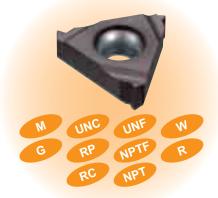
Burr comparison

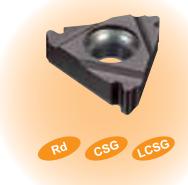
ISO metric external thread pitch 1.5mm (Enlarged views of incomplete threads at the initial stages of cutting)

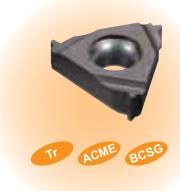
Use of Mitsubishi's unique M-class sharp edge technology. The sharp edge eliminates burrs on incomplete threads.

<Cutting conditions>

Workpiece : 316 Stainless steel Insert : MMT16ER150ISO-S


Grade : VP15TF
Cutting speed : 100m/min
Cutting method : Radial infeed
Depth of cut : Fixed cut area
Pass : 6 times
Coolant : WET

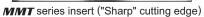

G-class ground insert


Features

A Wide Variety of Products

- · Mitsubishi Miracle Threading (MMT) series.193 inserts and 26 holders
- The MMT series allows a wide range of threading, from standard metric to threads for pipe couplings, gas and aerospace.

A higher level of precision than conventional inserts.


• The following tolerances can be achieved with the MMT series.

Thread Type	Threading Tolerance	
ISO Metric	6g / 6H	
American UN	2A / 2B	
Whitworth for BSW, BSP	Medium Class A	
BSPT	Standard BSPT	
Round DIN 405	7h / 7H	
ISO Trapezoidal 30°	7e / 7H	
American ACME	3G	
UNJ	3A	
API Buttress Casing	Standard API	
API Rounded Casing & Tubing	Standard API RD	
American NPT	Standard NPT	
American NPTF	Class2	

Long Tool Life with a "Sharp" Cutting Edge

- · A "sharp" cutting edge lengthens tool life.
- A "sharp" cutting edge can be achieved with a small and uniform honing along the entire cutting edge.

Competitor's insert

Insert selection

Choosing M-class inserts with 3-D chip breakers or G-class inserts

Insert	Chip control	Precision of thread
G-class inserts	0	0
M-class inserts with 3-D chip breakers	0	0

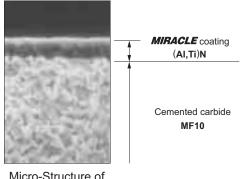
- For ideal chip control and a high cost performance ratio, M-class inserts with 3-D chip breakers are recommended.
- G-class inserts are recommended where higher precision is required.

Features of VP10MF (G-class ground insert only)

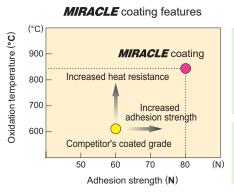
Superior wear and plastic deformation resistance

- High wear and plastic deformation resistance for threading when maintaining the thread form is important. Suitable for continuous high precision machining with extensive tool life.
- Effective in combination with G-class inserts for high precision threading.

Features of *VP15TF*


(G-class ground insert, M-class inserts with 3-D chip breakers)

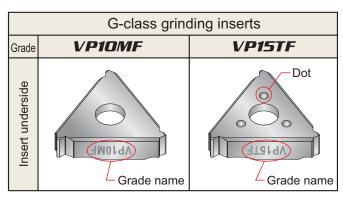
Wide versatility


- · High fracture resistance during low rigidity applications such as bar feed machining. Able to withstand harsh conditions for long periods where conventional inserts would be liable to breakage.
- · Effective combination of high cost performance M-class inserts with 3-D chip breakers.

Features of *MIRACLE* coating

MIRACLE coating

Micro-Structure of **VP10MF**

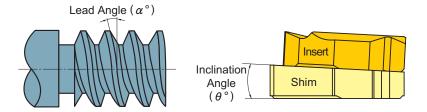


MIRACLE coating **VP10MF** and **VP15TF** displays high welding resistance, making it suitable for cutting mild steels, carbon steels, alloy steels, stainless steels and cast iron.

Longer tool life achieved with a combination of a reliable coating and a carbide substrate best suited for threading.

Grade markings on G-class inserts

An identifying mark printed on the side of the insert

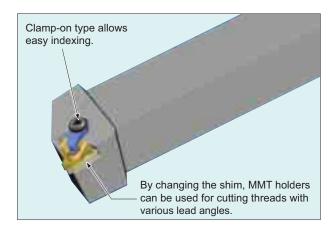

- VP15TF, G-class inserts have three dots embossed on the underside. (On the side "VP15TF" is printed.)
- VP15TF, G-class inserts have the grade name "VP15TF" printed on the side.

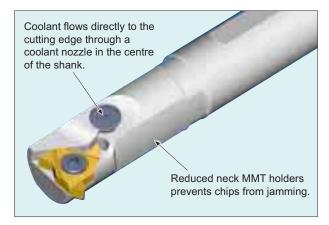
Note) M-class inserts with 3-D chip breakers have no dots, only the grade name marking.

Features of the new holders

Suitable for threading with a large lead angle.

- By changing only the shim, MMT holders can be used for turning of threads with various lead angles as well as the turning of left hand threads.
- · Insert interference with the thread can be prevented to achieve a good surface finish.

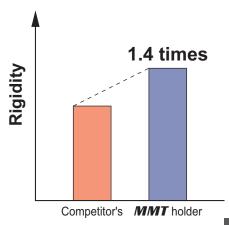



Lead Angle (α°)	Inclination Angle ($ heta$ $^{\circ}$)
-1.5°	-3°
-0.5°	-2°
0.5°	-1°
1.5°	0°
2.5°	1°
3.5°	2°
4.5°	3°

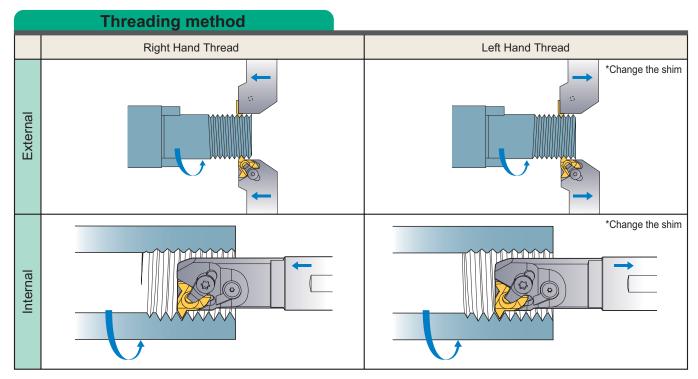
Delivered with the holder.

Internal threading holder with through coolant

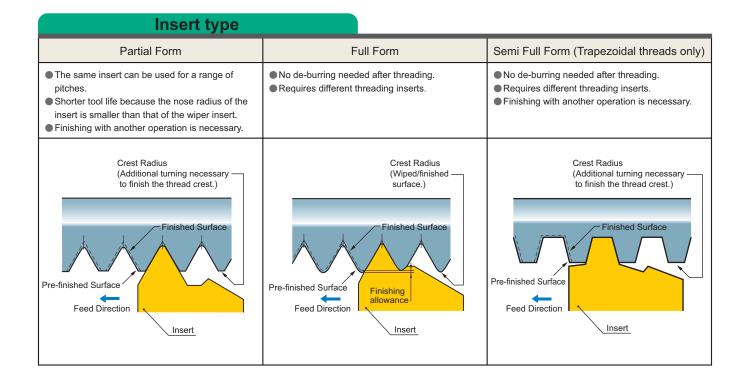
- · Efficient coolant supply to the cutting point lengthens the life of an insert.
- · Smooth chip discharge, the key to efficient internal threading can be achieved.



Use of special surface treatment


· Higher corrosion and friction resistance and longer tool life than conventional products.

Greatly increased rigidity


• Small diameter internal threading holder achieved approximately 1.4 times higher rigidity than a conventional product.

New Threading Tools

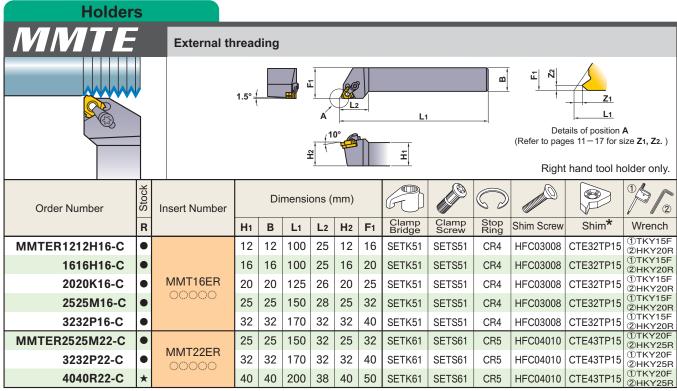
- · Usually, threads are cut with the feed towards the chuck.
- · When machining left hand threads, note that clamping rigidity is lowered due the application of back turning.
- · When machining left hand threads, the lead angle is negative. Ensure an appropriate lead angle by changing the shim.

Pipe threads and tool selection

Parallel Pipe Threads G(PF)

Thread Type	Number of threads	Standard internal diameter
G1/16	28	6.561
G1/8	20	8.556
G1/4	19	11.445
G3/8		14.950
G1/2		18.631
G5/8		20.587
G3/4	14	24.117
G7/8		27.877
G1		30.291
G1·1/8	11	34.939
G1·1/4		38.952

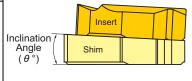
Note) Same as PF.


■ Taper Pipe Threads R, Rc(PT)

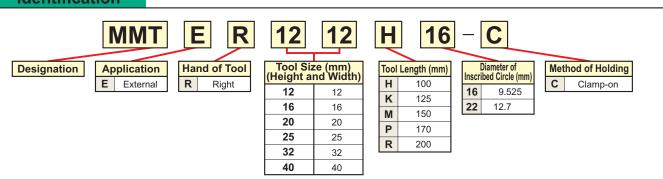
Thread Type	Number of threads	Standard internal diameter
R1/16	28	6.561
R1/8	20	8.556
R1/4	19	11.445
R3/8	19	14.950
R1/2	14	18.631
_	_	_
R3/4	14	24.117
_	_	_
R1	11	30.291
_	_	_
R1·1/4	11	38.952

Note) Same as Rc and PT.

The pitch is pre-determined for each nominal diameter. Note the minimum machining diameter especially when internal threading.


New Threading Tools [External Threading]

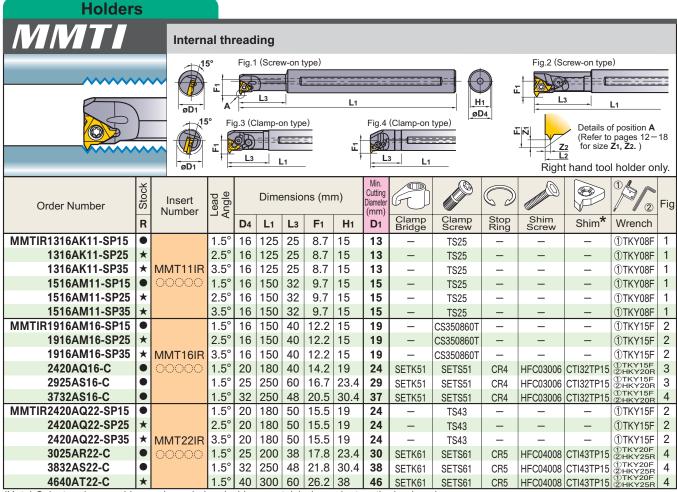
Select and use a shim as shown below (sold separately), dependant on the lead angle.


		Snim				
	Lead Angle (α°)	Order Number	Stock R	Inclination Angle (\theta ^ c)	on)	Applicable Holder
	-1.5°	CTE32TN15	•	-3	0	
	-0.5°	N05	•	-2	2	
	0.5°	P05	•	-1	э	MMTER
	1.5°	P15	•	0'	0	00000
	2.5°	P25	•	1'	2	16-C
ı	3 5°	P35		2	o	

Lead Angle (α°)	Order Number	Stock R	Angle (\theta °)	Applicable Holder
-1.5°	CTE43TN15	•	-3°	
-0.5°	N05	•	-2°	
0.5°	P05	•	-1°	MMTER
1.5°	P15	•	0°	00000
2.5°	P25	•	1°	22-C
3.5°	P35	•	2°	
4.5°	P45	•	3°	

3°

Identification

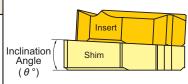


	Recommended cutting conditions					
	Work Material Hardness Grade Cutting Speed (m/m					
P	Mild Steel	≤180HB	VP10MF	185 (140 – 230)		
	Carbon Steel Alloy Steel	180-280HB	VP10MF	150 (100 – 200)		
М	Stainless Steel	≤200HB	VP10MF	140 (100 – 180)		
K	Cast Iron	Tensile Strength ≤350N/mm ²	VP10MF	150 (100-200)		

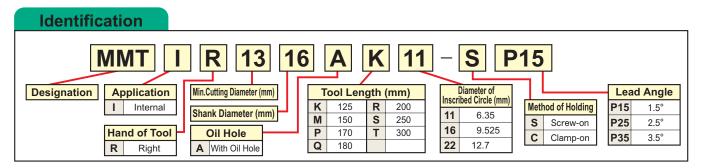
Work Material		Hardness	Grade	Cutting Speed (m/min)
s	Heat-Resistant Alloy	_	VP10MF	45 (15-70)
	Titanium Alloy	-	VP10MF	60 (40-80)
Н	Heat-Treated Alloy	45-55HRC	VP10MF	50 (30-70)

P45 Standard shim delivered with the holder.

MMTI TYPE BORING BARS



(Note) Select and use a shim as shown below (sold separately), dependant on the lead angle.


- · A screw-on tool holder uses no shim. (The holder body has a lead angle.) Use a tool holder with the appropriate lead angle.
- · Min. cutting diameter shows the internal hole diameter, not the thread diameter.

	Shim			
Lead Angle	Order Number	Stock	Inclination Angle	Applicable
(α°)	Order Number	R	(θ [°] °)	Holder
-1.5°	CTI32TN15	•	-3°	
-0.5°	N05		-2°	
0.5°	P05	•	-1°	MMTIR
1.5°	P15	•	0°	0000
2.5°	P25	•	1°	○○16-C
3.5°	P35	•	2°	
4.5°	P45		3°	

Lead Angle (α°)	Order Number	Stock R	Inclination Angle (\$\theta\$ °)	Applicable Holder
-1.5°	CTI43TN15	•	-3°	
-0.5°	N05		-2°	
0.5°	P05		-1°	MMTIR
1.5°	P15	•	0°	0000
2.5°	P25	•	1°	○○22-C
3.5°	P35		2°	
4.5°	P45		3°	

Standard shim delivered with the holder.

STANDARD FOR M-CLASS INSERTS WITH 3-D CHIP BREAKERS

	External									
		Coated	Pit	- ala	[Dimensio	ons (mm)		Total	
Туре	Order Number	TF.	PII	.CH	D1	S ₁	Z1	Z 2	Cutting Depth	Geometry
		VP15TF	mm	thread/inch	D1	31	21	~	(mm)	
· ·	MMT16ERA60-S	•	0.5-1.5	48-16	9.525	3.44	8.0	0.9	_	Partial form 60°
)9 e	16ERG60-S	•	1.75-3.0	14-8	9.525	3.44	1.2	1.7	_	Z2
Partial Profile 60°										21
ည့	MMT16ERA55-S	•		48-16	9.525	3.44	0.8	0.9	-	Partial form 55°
le 5	16ERG55-S	•		14-8	9.525	3.44	1.2	1.7	_	Z2 /
Partial Profile 55°										Z1 01 01
	MMT16ER100ISO-S	•	1.0		9.525	3.44	0.7	0.7	0.61	Full form 60°
ا ي	16ER125ISO-S	•	1.25		9.525	3.44	0.8	0.9	0.77	Z2/
ISO Metric	16ER150ISO-S	•	1.5		9.525	3.44	0.8	1.0	0.92	Z1
0	16ER175ISO-S 16ER200ISO-S	•	1.75 2.0		9.525 9.525	3.44 3.44	0.9 1.0	1.2	1.07	
8	16ER250ISO-S		2.5		9.525	3.44	1.1	1.5	1.53	21
	16ER300ISO-S	•	3.0		9.525	3.44	1.2	1.6	1.84	S1 D
	MMT16ER160UN-S	•		16	9.525	3.44	0.9	1.1	0.97	Full form 60°
=	16ER140UN-S	•		14	9.525	3.44	1.0	1.2	1.11	Z2
an	16ER120UN-S	•		12	9.525	3.44	1.1	1.4	1.30	Z1
American UN										S1
BSP	MMT16ER190W-S	•		19	9.525	3.44	0.8	1.0	0.86	Full form 55°
×	16ER140W-S	•		14	9.525	3.44	1.0	1.2	1.16	_____\
l g	16ER110W-S	•		11	9.525	3.44	1.1	1.5	1.48	Z1
Whitworth for BSW, BSP										51_01
	MMT16ER190BSPT-S	•		19	9.525	3.44	0.8	0.9	0.86	Full form 55°
	16ER140BSPT-S	•		14	9.525	3.44	1.0	1.2	1.16	Z ₂
	16ER110BSPT-S	•		11	9.525	3.44	1.1	1.5	1.48	Z1
BSPT										S1

Identification Ε 050 S 16 ISO S M-class inserts with 3-D chip breakers Designation Hand of Tool Pitch Threading Type 60 Partial Profile 60° R Right 100 1.0mm 0.5 - 1.5mm 55 Partial Profile 55° Diameter of Inscribed Circle (mm) or 48-16 thread/inch 125 1.25mm Application ISO ISO Metric 1.5mm 150 Е External W Whitworth for BSW, BSP 1.75-3.0_{mm} G or 14-8 thread/inch 11 6.35 Internal 175 1.75mm **BSPT** BSPT 16 9.525 UN American UN 200 2.0mm 250 2.5mm 300 3.0mm

	Internal									
Type	Order Number	Coated	Pit	ch			ons (mm)		Total Cutting	Geometry
ΤŢ	Order Number	VP15TF	mm	thread/inch	D1	S1	Z1	Z 2	Depth (mm)	Geometry
	MMT11IRA60-S	•	0.5-1.5	48-16	6.35	3.04	0.8	0.9	— (······)	Partial form 60°
اء	16IRA60-S		0.5 1.5	48-16	9.525	3.44	0.8	0.9	_	Partial form 60°
)9 e	16IRG60-S		1.75 – 3.0	14-8	9.525	3.44	1.2	1.7	_	\ \tau\tau\tau\tau\tau\tau\tau\tau\tau\tau
rofii	10111000-3		1.75-3.0	14-0	9.525	3.44	1.2	1.7		Z1
Partial Profile 60°										
										S1
	MMT11IRA55-S	•		48-16	6.35	3.04	0.8	0.9	_	Partial form 55°
22°	16IRA55-S	•		48-16	9.525	3.44	8.0	0.9	_	Z2
ije ije	16IRG55-S	•		14-8	9.525	3.44	1.2	1.7	_	z ₁
Partial Profile 55°										S1_
	MMT11IR100ISO-S	•	1.0		6.35	3.04	0.6	0.7	0.58	Full form
	11IR125ISO-S	•	1.25		6.35	3.04	8.0	0.9	0.72	600
	11IR150ISO-S	•	1.5		6.35	3.04	8.0	1.0	0.87	60° Z2
ان	16IR100ISO-S	•	1.0		9.525	3.44	0.6	0.7	0.58	
SO Metric	16IR125ISO-S	•	1.25		9.525	3.44	0.8	0.9	0.72	21
0	16IR150ISO-S	•	1.5		9.525	3.44	0.8	1.0	0.87	
<u>S</u>	16IR175ISO-S	•	1.75		9.525	3.44	0.9	1.2	1.01	
	16IR200ISO-S	•	2.0		9.525	3.44	1.0	1.3	1.15	S1
	16IR250ISO-S	•	2.5		9.525	3.44	1.1	1.5	1.44	
	16IR300ISO-S	•	3.0		9.525	3.44	1.1	1.5	1.73	
	MMT16IR160UN-S	•		16	9.525	3.44	0.9	1.1	0.92	Full form 60°
_	16IR140UN-S	•		14	9.525	3.44	0.9	1.2	1.05	Z2
ا ج	16IR120UN-S	•		12	9.525	3.44	1.1	1.4	1.22	z ₁
American UN										51
SP	MMT16IR190W-S	•		19	9.525	3.44	8.0	1.0	0.86	Full form 55°
SW, BSP	16IR140W-S	•		14	9.525	3.44	1.0	1.2	1.16	Z2
BSV	16IR110W-S	•		11	9.525	3.44	1.1	1.5	1.48	z ₁
Whitworth for B										S1
	MMT16IR190BSPT-S	•		19	9.525	3.44	0.8	0.9	0.86	Full form 55°
	16IR140BSPT-S	•		14	9.525	3.44	1.0	1.2	1.16	Z2
_	16IR110BSPT-S	•		11	9.525	3.44	1.1	1.5	1.48	z ₁
BSPT										S1 - S1

MMT STANDARDS FOR G-CLASS GROUND INSERTS

		Externa	ıl										
	_ e		ė	Coa	ated	_			Dimensi	ons (mm))	Total	
Туре	Thread Tolerance	Order Number	Insert Tolerance	ΨŁ	IT(Pit Pit	ch					Cutting	Geometry
7	Thr	Order Number	lns Ser	VP10MF	151		I	D1	S1	Z1	Z 2	Depth	Geometry
	. ∟			Ϋ́	₹	Pit	thread/inch					(mm)	
		MMT16ERA60	G	•	•	0.5-1.5	48-16	9.525	3.44	0.8	0.9	_	Partial form
09		16ERG60	G		•	1.75-3.0	14-8	9.525	3.44	1.2	1.7	_	60°
ije		16ERAG60	G	•		0.5-3.0	48-8	9.525	3.44	1.2	1.7	_	Z ₁
ro	_	22ERN60	G			3.5-5.0	7-5	12.7	4.64	1.7	2.5	_	
Partial Profile 60°													51 01
		MMT16ERA55	G	•	•		48-16	9.525	3.44	0.8	0.9	_	Partial form
55°		16ERG55	G	•	•		14-8	9.525	3.44	1.2	1.7	_	55° (Z2)
ie (16ERAG55	G	•			48-8	9.525	3.44	1.2	1.7	_	\ -\\ -\
rof	_	22ERN55	G	•			7-5	12.7	4.64	1.7	2.5	_	Z1 Z1
Partial Profile 55°													51 01
		MMT16ER050ISO	G	•		0.5		9.525	3.44	0.6	0.4	0.31	Full form
		16ER075ISO	G	•		0.75		9.525	3.44	0.6	0.6	0.46	
		16ER100ISO	G	•	•	1.0		9.525	3.44	0.7	0.7	0.61	
		16ER125ISO	G		•	1.25		9.525	3.44	0.8	0.9	0.77	
		16ER150ISO	G	•	•	1.5		9.525	3.44	0.8	1.0	0.92	
		16ER175ISO	G		•	1.75		9.525	3.44	0.9	1.2	1.07	
		16ER200ISO	G	•	•	2.0		9.525	3.44	1.0	1.3	1.23	60°
1.,		16ER250ISO	G		•	2.5		9.525	3.44	1.1	1.5	1.53	(Z2)
SO Metric		16ER300ISO	G	•	•	3.0		9.525	3.44	1.2	1.6	1.84	Z1
Me	6g	22ER350ISO	G			3.5 4.0		12.7 12.7	4.64 4.64	1.6 1.6	2.3	2.15	
SO		22ER400ISO 22ER450ISO	G	•		4.0		12.7	4.64	1.7	2.3 2.4	2.45 2.76	
=		22ER450ISO 22ER500ISO	G			5.0		12.7	4.64	1.7	2.4	3.07	01
		22ER30013O	9	•		5.0		12.1	4.04	1.7	2.5	3.07	S1 . U

Identification R **MMT** 16 050 ISO Designation Hand of Tool Pitch Threading Type R Right 050 0.5mm Partial Profile 60° 0.5 - 1.5 mm075 0.75mm 55 Partial Profile 55° Diameter of Inscribed Circle (mm) or 48-16 thread/inch **Application** 100 1.0mm ISO Metric Е External 125 1.25mm W Whitworth for BSW, BSP $1.75 - 3.0_{mm}$ 11 6.35 Internal 150 1.5mm **BSPT** BSPT G 175 1.75mm UN American UN 16 9.525 14-8 thread/inch 200 2.0mm Round DIN 405 22 12.7 0.5 - 3.0 mm250 2.5mm TR ISO Trapezoidal 30° AG 300 ACME American ACME 3.0mm 48-8 thread/inch UNJ UNJ 350 3.5mm APBU API Buttress Casing 400 4.0mm 3.5 - 5.0 mmΝ APRD API Round Casing & Tubing 450 4.5mm 7-5 thread/inch NPT NPT 500 5.0mm NPTF NPTF

		Interna	ı										
Type	Thread Tolerance	Order Number	Insert Tolerance	VP10MF SO	VP15TF	EW Pit		D1	Dimensio S 1	ons (mm	Z 2	Total Cutting Depth	Geometry
	· Ĕ	MANATA A IDA CO	G	-	_	mm	thread/inch	6.35	3.04	0.8	0.9	(mm)	
٥		MMT11IRA60 16IRA60	G	•	•	0.5-1.5 0.5-1.5	48-16	9.525	3.44	0.8	0.9	_	Partial form 60°
)9 €		16IRG60	G	•		1.75 – 3.0	14-8	9.525	3.44	1.2	1.7	_	Z2
Jije		16IRAG60	G			0.5-3.0	48-8	9.525	3.44	1.2	1.7	_	Z1
Pro	-	22IRN60	G			3.5-5.0	7-5	12.7	4.64	1.7	2.5	_	
Partial Profile 60°						0.0 0.0	1 0				2.0		51
		MMT11IRA55	G	•	•		48-16	6.35	3.04	0.8	0.9	_	Partial form
55°		16IRA55	G	•	•		48-16	9.525	3.44	0.8	0.9	_	55° Z2
ie		16IRG55	G	•	•		14-8	9.525	3.44	1.2	1.7	_	Z ₁
rof	_	16IRAG55	G	•			48-8	9.525	3.44	1.2	1.7	_	
ا ا		22IRN55	G	•			7-5	12.7	4.64	1.7	2.5	_	
Partial Profile 55°													S1 D1
		MMT11IR050ISO	G	•		0.5		6.35	3.04	0.6	0.4	0.29	Full form
		11IR075ISO	G	•		0.75		6.35	3.04	0.6	0.6	0.43	
		11IR100ISO	G	•	•	1.0		6.35	3.04	0.6	0.7	0.58	
		11IR125ISO	G	•	•	1.25		6.35	3.04	0.8	0.9	0.72	
		11IR150ISO	G	•	•	1.5		6.35	3.04	0.8	1.0	0.87	
		11IR175ISO	G	•		1.75		6.35	3.04	0.9	1.1	1.01	
		11IR200ISO	G	•		2.0		6.35	3.04	0.9	1.1	1.15	000
۱		16IR050ISO	G	•		0.5		9.525	3.44	0.6	0.4	0.29	60° Z2
ı;		16IR075ISO	G	•	_	0.75		9.525	3.44	0.6	0.6	0.43	z ₁
+		16IR100ISO				1.0		9.525	3.44	0.6	0.7	0.58	
Met	6H		G	•						0.0	0.0	0.70	
SO Met	6H	16IR125ISO	G	•	•	1.25		9.525	3.44	0.8	0.9	0.72	
ISO Metric	6H	16IR125ISO 16IR150ISO	G G	•	•	1.25 1.5		9.525 9.525	3.44 3.44	8.0	1.0	0.87	
ISO Met	6H	16IR125ISO 16IR150ISO 16IR175ISO	G G G	•	•	1.25 1.5 1.75		9.525 9.525 9.525	3.44 3.44 3.44	0.8	1.0 1.2	0.87 1.01	S1 D7
ISO Met	6H	16IR125ISO 16IR150ISO 16IR175ISO 16IR200ISO	G G G	•	•	1.25 1.5 1.75 2.0		9.525 9.525 9.525 9.525	3.44 3.44 3.44 3.44	0.8 0.9 1.0	1.0 1.2 1.3	0.87 1.01 1.15	Si
ISO Met	6H	16IR125ISO 16IR150ISO 16IR175ISO 16IR200ISO 16IR250ISO	G G G G	•	•	1.25 1.5 1.75 2.0 2.5		9.525 9.525 9.525 9.525 9.525	3.44 3.44 3.44 3.44 3.44	0.8 0.9 1.0 1.1	1.0 1.2 1.3 1.5	0.87 1.01 1.15 1.44	S1
ISO Met	6H	16IR125ISO 16IR150ISO 16IR175ISO 16IR200ISO 16IR250ISO 16IR300ISO	G G G G	•	•	1.25 1.5 1.75 2.0 2.5 3.0		9.525 9.525 9.525 9.525 9.525 9.525	3.44 3.44 3.44 3.44 3.44 3.44	0.8 0.9 1.0 1.1 1.1	1.0 1.2 1.3 1.5 1.5	0.87 1.01 1.15 1.44 1.73	S1
ISO Met	6H	16IR125ISO 16IR150ISO 16IR175ISO 16IR200ISO 16IR250ISO 16IR300ISO 22IR350ISO	G G G G G	•	•	1.25 1.5 1.75 2.0 2.5 3.0 3.5		9.525 9.525 9.525 9.525 9.525 9.525 12.7	3.44 3.44 3.44 3.44 3.44 4.64	0.8 0.9 1.0 1.1 1.1 1.6	1.0 1.2 1.3 1.5 1.5 2.3	0.87 1.01 1.15 1.44 1.73 2.02	<u>S1</u>
ISO Met	6H	16IR125ISO 16IR150ISO 16IR175ISO 16IR200ISO 16IR250ISO 16IR300ISO	G G G G	•	•	1.25 1.5 1.75 2.0 2.5 3.0		9.525 9.525 9.525 9.525 9.525 9.525	3.44 3.44 3.44 3.44 3.44 3.44	0.8 0.9 1.0 1.1 1.1	1.0 1.2 1.3 1.5	0.87 1.01 1.15 1.44 1.73	S1

MMT STANDARDS FOR G-CLASS GROUND INSERTS

		Externa	ıl										
	_ o		e e	Coa	ated				Dimensi	ons (mm))	Total	
Туре	Thread Tolerance	Onden Normale en	Insert Tolerance	¥	II.	Pit Pit	ch					Cutting	G
	Thr	Order Number	lns	VP10MF	15			D1	S1	Z1	Z 2	Depth	Geometry
	. 12			7	≥	Pit mm	thread/inch					(mm)	
		MMT16ER320UN	G	•			32	9.525	3.44	0.6	0.6	0.49	Full form
		16ER280UN	G	•			28	9.525	3.44	0.6	0.7	0.56	
		16ER240UN	G	•			24	9.525	3.44	0.7	8.0	0.65	
		16ER200UN	G	•			20	9.525	3.44	0.8	0.9	0.78	
		16ER180UN	G	•			18	9.525	3.44	0.8	1.0	0.87	
		16ER160UN	G	•	•		16	9.525	3.44	0.9	1.1	0.97	
		16ER140UN	G	•	•		14	9.525	3.44	1.0	1.2	1.11	
		16ER130UN	G	•			13	9.525	3.44	1.0	1.3	1.20	
		16ER120UN	G	•	•		12	9.525	3.44	1.1	1.4	1.30	60°
2		16ER110UN	G	•			11	9.525	3.44	1.1	1.5	1.42	Z2
l m		16ER100UN	G	•			10	9.525	3.44	1.1	1.5	1.56	Z1
American UN	2A	16ER090UN	G	•			9	9.525	3.44	1.2	1.7	1.73	
me		16ER080UN	G	•			8	9.525	3.44	1.2	1.6	1.95	
آ کا		22ER070UN	G	•			7	12.7	4.64	1.6	2.3	2.22	Si
		22ER060UN	G	•			6	12.7	4.64	1.6	2.3	2.60	-
		22ER050UN	G	•			5	12.7	4.64	1.7	2.5	3.12	
		MMT16ER280W	G	•			28	9.525	3.44	0.6	0.7	0.58	Full form
		16ER260W	G	•			26	9.525	3.44	0.7	8.0	0.63	
		16ER200W	G	•			20	9.525	3.44	0.8	0.9	0.81	
		16ER190W	G	•			19	9.525	3.44	0.8	1.0	0.86	
SP		16ER180W	G	•			18	9.525	3.44	0.8	1.0	0.90	
,	∢	16ER160W	G	•			16	9.525	3.44	0.9	1.1	1.02	55°
NS.	SS	16ER140W	G	•	•		14	9.525	3.44	1.0	1.2	1.16	Z ₂
orth for BSW, BSP	edium Class A	16ER120W	G	•			12	9.525	3.44	1.1	1.4	1.36	Z1 Z1
윤	Ę	16ER110W	G	•	•		11	9.525	3.44	1.1	1.5	1.48	
±	ediı	16ER100W	G				10	9.525	3.44	1.1	1.5	1.63	
ĬŽ.	Š	16ER090W	G				9	9.525	3.44	1.2	1.7	1.81	S1 D1
Whitwo		16ER080W 22ER070W	G				8	9.525 12.7	3.44 4.64	1.2 1.6	1.5 2.3	2.03	· ·
-		22ER070W 22ER060W	G G	•			6	12.7	4.64	1.6	2.3	2.32	
		22ER050W 22ER050W	G				5	12.7	4.64	1.7	2.4	3.25	
		ZZENOJUW	U U					14.1	7.04	1.1	۷.٦	0.20	
		MMT16ER280BSPT	G	•			28	9.525	3.44	0.6	0.6	0.58	Full form 55°
	PT	16ER190BSPT	G	•	•		19	9.525	3.44	0.8	0.9	0.86	Z2
_	BSI	16ER140BSPT	G	•	•		14	9.525	3.44	1.0	1.2	1.16	Z1
BSPT	ard	16ER110BSPT	G	•	•		11	9.525	3.44	1.1	1.5	1.48	
in the second	Standard BSPT												51 01
2		MMT16ER100RD	G	•			10	9.525	3.44	1.1	1.2	1.27	Full form 30°
40		16ER080RD	G				8	9.525	3.44	1.4	1.3	1.59	Z2V
N	71.	16ER060RD	G				6	9.525	3.44	1.5	1.7	2.12	Z1
Round DIN 405	7h	22ER040RD	G				4	9.525	3.44	2.2	2.3	3.18	
Ľ													S1 O

		Interna	l										
	Φ		Φ	Coa	ated				Dimensio	ons (mm))	Total	
l e	Thread Tolerance		Insert Tolerance	ш	(1	Pit	ch			(11111)		Cutting	
Туре	hre	Order Number	Insert leranc	VP10MF	51			D1	S1	Z1	Z 2	Depth	Geometry
	- 6		은	Ş	Ą	Pit	thread/inch					(mm)	
		MMT11IR320UN	G	•			32	6.35	3.04	0.6	0.6	0.46	Full form
		11IR280UN	G	•			28	6.35	3.04	0.6	0.7	0.52	
		11IR240UN	G	•			24	6.35	3.04	0.7	8.0	0.61	
		11IR200UN	G	•			20	6.35	3.04	0.8	0.9	0.73	
		11IR180UN	G	•			18	6.35	3.04	0.8	1.0	0.81	
		11IR160UN	G	•			16	6.35	3.04	0.9	1.1	0.92	
		11IR140UN	G	•			14	6.35	3.04	0.9	1.1	1.05	
		16IR320UN	G	•			32	9.525	3.44	0.6	0.6	0.46	
		16IR280UN	G	•			28	9.525	3.44	0.6	0.7	0.52	60°
z		16IR240UN	G	•			24	9.525	3.44	0.7	0.8	0.61	\(\frac{\omega_2}{Z_2}\)
) u		16IR200UN	G	•			20	9.525	3.44	0.8	0.9	0.73	z ₁
American UN	2B	16IR180UN	G	•			18	9.525	3.44	0.8	1.0	0.81	
Jer		16IR160UN	G	•	•		16	9.525	3.44	0.9	1.1	0.92	
٩		16IR140UN	G	•	•		14	9.525	3.44	0.9	1.2	1.05	
		16IR130UN	G	•			13	9.525	3.44	1.0	1.3	1.13	S1
		16IR120UN	G	•	•		12	9.525	3.44	1.1	1.4	1.22	
		16IR110UN	G	•			11	9.525	3.44	1.1	1.5	1.33	
		16IR100UN	G	•			10	9.525	3.44	1.1	1.5	1.47	
		16IR090UN	G	•			9	9.525	3.44	1.2	1.7	1.63	
		16IR080UN	G	•			8	9.525	3.44	1.1	1.5	1.83	
		22IR070UN	G	•			7	12.7	4.64	1.6	2.3	2.09	
		22IR060UN	G	•			6	12.7	4.64	1.6	2.3	2.44	
		22IR050UN	G	•			5	12.7	4.64	1.6	2.3	2.93	
		MMT11IR190W	G	•			19	6.35	3.04	0.8	1.0	0.86	Full form
		11IR140W	G	•			14	6.35	3.04	0.9	1.1	1.16	
		16IR280W	G	•			28	9.525	3.44	0.6	0.7	0.58	
		16IR260W	G	•			26	9.525	3.44	0.7	0.8	0.63	
_ ا		16IR200W	G	•			20	9.525	3.44	0.8	0.9	0.81	
BS		16IR190W	G	•	•		19	9.525	3.44	0.8	1.0	0.86	55°
orth for BSW, BSP	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	16IR180W	G	•			18	9.525	3.44	0.8	1.0	0.90	(Z ₂)
BS	Class ,	16IR160W	G	•			16	9.525	3.44	0.9	1.1	1.02	z ₁
ē		16IR140W	G	•	•		14	9.525	3.44	1.0	1.2	1.16	
긡	ledium (16IR120W	G	•			12	9.525	3.44	1.1	1.4	1.36	
Vor	Med	16IR110W	G	•	•		11	9.525	3.44	1.1	1.5	1.48	
Whitwo	-	16IR100W	G	•			10	9.525	3.44	1.1	1.5	1.63	S1 07
Ĭ		16IR090W	G	•			9	9.525	3.44	1.2	1.7	1.81	
		16IR080W	G	•			8	9.525	3.44	1.2	1.5	2.03	
		22IR070W	G	•			7	12.7	4.64	1.6	2.3	2.32	
		22IR060W	G	•			6	12.7	4.64	1.6	2.3	2.71	
L_	<u></u>	22IR050W	G	•			5	12.7	4.64	1.7	2.4	3.25	
		MMT11IR190BSPT	G	•			19	6.35	3.04	0.8	0.9	0.86	Full form 55°
	BSPT	11IR140BSPT	G	•			14	6.35	3.04	0.9	1.0	1.16	Z2/
Ŀ	BS	16IR190BSPT	G	•	•		19	9.525	3.44	0.8	0.9	0.86	Z1
BSPT	ard	16IR140BSPT	G	•	•		14	9.525	3.44	1.0	1.2	1.16	
"	Standard	16IR110BSPT	G	•	•		11	9.525	3.44	1.1	1.5	1.48	
	Sta												S1 07
		MMT16IR100RD	G	•			10	9.525	3.44	1.1	1.2	1.27	Full form 30°
105		16IR080RD	G	•			8	9.525	3.44	1.4	1.4	1.59	
X		16IR060RD	G	•			6	9.525	3.44	1.4	1.5	2.12	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
٥	7H	22IR040RD	G	•			4	12.7	4.64	2.2	2.3	3.18	Z ₁
Round DIN 405			0										51

MMT STANDARDS FOR G-CLASS GROUND INSERTS

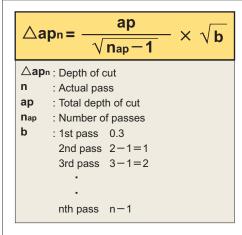
		Externa	ıl									
	- e		e	Coated				Dimensi	ons (mm)	Total	
Туре	ead anc	Onden Normale en	Insert	¥	Pit	tch					Cutting	0
~	Thread Tolerance	Order Number	Insert Tolerance	VP10MF			D1	S1	Z1	Z 2	Depth	Geometry
	. 1			-	mm	thread/inch					(mm)	
000		MMT16ER150TR	G	•	1.5		9.525	3.44	1.0	1.1	0.90	Semi-full form 72
<u>a</u>		16ER200TR	G	•	2.0		9.525	3.44	1.1	1.3	1.25	1
l jė		16ER300TR	G	•	3.0		9.525	3.44	1.3	1.5	1.75	Z ₁
Jez	7e	22ER400TR	G	•	4.0		12.7	4.64	1.7	1.9	2.25	
lag.		22ER500TR	G	•	5.0		12.7	4.64	2.1	2.5	2.75	
ISO Trapezoidal 30°												S1 01
		MMT16ER120ACME	G	•		12	9.525	3.44	1.1	1.2	1.19	Semi-full form 72
₩		16ER100ACME	G			10	9.525	3.44	1.3	1.4	1.52	Semi-ruli form Z2
5		16ER080ACME	G			8	9.525	3.44	1.4	1.5	1.84	_ ↓
٦	3G	22ER060ACME	G			6	12.7	4.64	1.8	2.1	2.37	Z1 Z1
<u>ا</u> ژ		22ER050ACME	G			5	12.7	4.64	2.0	2.3	2.79	
American ACME		ZZZIIOOO/ (OIIIZ					12.1	1.01	2.0	2.0	2.70	
₹												Sı
		MMT16ER320UNJ	G	•		32	9.525	3.44	0.6	0.7	0.46	Full form
		16ER280UNJ	G	•		28	9.525	3.44	0.7	0.7	0.52	
		16ER240UNJ	G	•		24	9.525	3.44	0.7	0.8	0.61	60°
		16ER200UNJ	G	•		20	9.525	3.44	0.8	0.9	0.73	Z2
⊇	0.4	16ER180UNJ	G	•		18	9.525	3.44	0.8	1.0	0.81	Z1 Z1
NS	3A	16ER160UNJ	G	•		16	9.525	3.44	0.9	1.1	0.92	
		16ER140UNJ	G	•		14	9.525	3.44	1.0	1.2	1.05	
		16ER120UNJ	G	•		12	9.525	3.44	1.1	1.3	1.22	S ₁
		16ER100UNJ	G	•		10	9.525	3.44	1.2	1.5	1.47	-12-14
		16ER080UNJ	G	•		8	9.525	3.44	1.2	1.6	1.83	
g(MMT22ER050APBU	G	•		5	12.7	4.64	3.1	1.9	1.55	Full form +\13°
API Buttress Casing	API											Z2
ttress	Standard API											
Bu	Star											
	0,											SI
g&Tubing		MMT16ER100APRD	G	•		10	9.525	3.44	1.2	1.4	1.41	Full form 30°
ZT E	RD	16ER080APRD	G	•		8	9.525	3.44	1.3	1.5	1.81	Z2V
sing	Standard API											z ₁
ဦ	ard											
l ii	nda											
API Round Casin	Sta											S1 01
_		MMT16ER270NPT	G	•		27	9.525	3.44	0.7	0.8	0.66	
Ē		16ER180NPT	G			18	9.525	3.44	0.7	1.0	1.01	Full form 60°
₽	Ē	16ER140NPT	G			14	9.525	3.44	0.9	1.2	1.33	l + \\
an	rd	16ER115NPT	G	•		11.5	9.525	3.44	1.1	1.5	1.64	Z1 Z1
eric	nda	16ER080NPT	G	•		8	9.525	3.44	1.3	1.8	2.42	
American NPT	Standard NPT						3.323					01
L											<u> </u>	<u> S1 </u>
Ī		MMT16ER270NPTF	G	•		27	9.525	3.44	0.7	0.8	0.64	Full form 60°
F		16ER180NPTF	G	•		18	9.525	3.44	0.8	1.0	1.00	ZZ
Ž	2	16ER140NPTF	G	•		14	9.525	3.44	0.9	1.2	1.35	Z ₁
can	Class	16ER115NPTF	G	•		11.5	9.525	3.44	1.1	1.5	1.63	
eri	Ö	16ER080NPTF	G	•		8	9.525	3.44	1.3	1.8	2.38	
American NPTF												D1
												<u> </u>

MMT16IR270NPT G O D D D D D D D D D			Interna	I									
MMT16IR150TR G 0 1.5 0.525 3.44 1.0 1.1 0.90		_ 0		g.	Coated			ı	Dimensio	ons (mm))	Total	
MMT16IR150TR G 0 1.5 0.525 3.44 1.0 1.1 0.90	be	ead anc	Order Number	sert	¥.	Pit	ch					Cutting	Coomotry
MMT16IR150TR G 0 1.5 0.525 3.44 1.0 1.1 0.90	5	Thr	Order Number	le e	10,			D1	S1	Z1	Z 2	1	Geometry
1988 1988		F					thread/inch	0.505	2.11			` ′	
Wind	30				_								Semi-full form Z2
NATTIGIR120ACME G 12 9.525 3.44 1.2 1.3 1.19 5.29 5.21 5.3 5.29 5.3 5.29 5.3	dal				_								30°₩1_
NATTIGIR120ACME G 12 9.525 3.44 1.2 1.3 1.19 5.29 5.21 5.3 5.29 5.3 5.29 5.3	ZOİ	7⊔		-	_								Z1
NATTIGIR120ACME G 12 9.525 3.44 1.2 1.3 1.19 5.29 5.21 5.3 5.29 5.3 5.29 5.3	аре	/11			_								
NATTIGIR120ACME G 12 9.525 3.44 1.2 1.3 1.19 5.29 5.21 5.3 5.29 5.3 5.29 5.3	F		ZZINOGOTN	<u> </u>		0.0		12.7	1.01	2.1	2.0	2.70	
NATTIGIR120ACME G 12 9.525 3.44 1.2 1.3 1.19 5.29 5.21 5.3 5.29 5.3 5.29 5.3	180												S1
16 R100ACME G			MMT16IR120ACME	G	•		12	9.525	3.44	1.2	1.3	1.19	Semi-full form 72
When machining an internal UNJ thread, cut an internal hole with the appropriate diameter. Then machine with 60° American UN. In this case, a full form type insert cannot be used. MMT22IR050APBU G • 5 12.7 4.64 2.8 1.9 1.55 Full form 13° 1.55	W		16IR100ACME	G	•		10	9.525	3.44	1.2	1.3	1.52	
When machining an internal UNJ thread, cut an internal hole with the appropriate diameter. Then machine with 60° American UN. In this case, a full form type insert cannot be used. MMT22IR050APBU G • 5 12.7 4.64 2.8 1.9 1.55 Full form 13° 1.55	A		16IR080ACME	G	•		8	9.525	3.44	1.4			Z1 Z1
When machining an internal UNJ thread, cut an internal hole with the appropriate diameter. Then machine with 60° American UN. In this case, a full form type insert cannot be used. MMT22IR050APBU G • 5 12.7 4.64 2.8 1.9 1.55 Full form 13° 12° 1	gan	3G		G	•		6						
When machining an internal UNJ thread, cut an internal hole with the appropriate diameter. Then machine with 60° American UN. In this case, a full form type insert cannot be used. MMT22IR050APBU G • 5 12.7 4.64 2.8 1.9 1.55 Full form 13° 12° 1	eri		22IR050ACME	G	•		5	12.7	4.64	2.0	2.3	2.79	
When machining an internal UNJ thread, cut an internal hole with the appropriate diameter. Then machine with 60° American UN. In this case, a full form type insert cannot be used. MMT22IR050APBU G • 5 12.7 4.64 2.8 1.9 1.55 Full form 13° 1.55	Am												S ₁
Then machine with 60° American UN. In this case, a full form type insert cannot be used. Dispute													+ - +
Then machine with 60° American UN. In this case, a full form type insert cannot be used. Dispute													
Then machine with 60° American UN. In this case, a full form type insert cannot be used. Dispute													
Then machine with 60° American UN. In this case, a full form type insert cannot be used. Dispute													
Then machine with 60° American UN. In this case, a full form type insert cannot be used. Dispute	١_		When machini	na on	intorno	ı JIINII throc	d out on int	ornal hal	lo with th	o oppror	rioto dia	motor	'
MMT16IR100APRD G O D D D D D D D D D	ÍŠ												
Separation Sep			11101111110	I		ı	,	I I	, po	1		 I	ı
Separation Sep													
Separation Sep													
Separation Sep													
MMT16IR100APRD G	ng		MMT22IR050APBU	G	•		5	12.7	4.64	2.8	1.9	1.55	Full form 13°
MMT16IR100APRD G	asi	<u>-</u>											Z ₂
MMT16IR100APRD G	SS	y p											Z1
MMT16IR100APRD G	tres	ıdar											
MMT16IR100APRD G	But	stan											
MMT16IR100APRD G	٩	0)											S ₁ 0,
The bound of the point of the			MMT16ID100ADDD				20	0.525	2 11	1.2	1 /	1 /1	F. II S
MMT16IR140NPTF G MMT16IR	ligi	2			_								Full form
MMT16IR140NPTF G MMT16IR	g&T	I F	TOINGOOALIND	٦			0	3.323	5.44	1.5	1.5	1.01	l ∧ - - ↓
MMT16IR270NPT G O D D D D D D D D D	asin	ďγ											Z1
MMT16IR270NPT G O D D D D D D D D D] b	dar											
MMT16IR270NPT G O D D D D D D D D D	- So	tan											
Tell	API	0)											<u> S1 </u>
16IR180NPT G 0 18 9.525 3.44 0.8 1.0 1.01 1.01 16IR140NPT G 0 11.5 9.525 3.44 1.1 1.5 1.64 16IR080NPT G 0 8 9.525 3.44 1.3 1.8 2.42 1.35 Eull form 688 1.0 1.01				_	•								
MMT16IR140NPTF G ● 14 9.525 3.44 0.9 1.2 1.35 Full form cos	IPT	PT			•								Z2/
MMT16IR140NPTF G ● 14 9.525 3.44 0.9 1.2 1.35 Full form cos	l A	Z D		_	_								Z ₁
MMT16IR140NPTF G ● 14 9.525 3.44 0.9 1.2 1.35 Full form cos	rica	dar											
MMT16IR140NPTF G ● 14 9.525 3.44 0.9 1.2 1.35 Full form cos	me	itan	16IR080NPT	G	•		8	9.525	3.44	1.3	1.8	2.42	
MMT16IR140NPTF G ● 14 9.525 3.44 0.9 1.2 1.35 Full form 60° 16IR15NPTF G ● 11.5 9.525 3.44 1.1 1.5 1.63	 	(0)											S1 07
16IR115NPTF G 115 9525 3.44 11 15 1.63 Full form 60°	\vdash		MMT16IR140NIDTE	G			14	9 525	3 ///	0.0	1 2	1 25	Full forms
	ഥ		16IR115NPTF	G			11.5	9.525	3.44	1.1	1.5	1.63	Full form 60°
16 R080NPTF G ● 8 9.525 3.44 1.3 1.8 2.38	NP	8			_								z ₁
	٦	3SS.		ا ٽ				5.525	Ų. I I				
	,,,	<u> </u>		I	l							1	
	erica	U											
	American NPTF	O											

Recommended Cutting Methods and Conditions

Threading Methods

	Features							
	Advantages	Disadvantages						
Radial Infeed	 Easiest to use. (Standard programme for threading) Wide application. (Cutting conditions easy to change.) Uniform wear of the right and left sides of the cutting edge. 	 Difficult chip control. Subject to vibration in the later passes due to long cutting edge in contact with workpiece. Ineffective for large pitch threading. Heavy load on the nose radius. 						
	 Relatively easy to use. (Semi-standard program for threading.) Reduced cutting force. Suitable for large pitch threads or materials that peel easily. Good chip discharge. 	 Large flank wear of the right side of a cutting edge. Relatively difficult to change cutting depth. (Re-programming necessary) 						
Flank Infeed								
1° - 5°	 Preventing flank wear on the right side of the cutting edge. Reduced cutting force. Good for large pitch or materials that peel easily. Good chip discharge. 	Complex machining programming. Difficult to change cutting depth. (NC programming necessary)						
Modified Flank Infeed								
Incremental Infeed	 Uniform wear of the right and left sides of the cutting edge. Reduced cutting force. Good for large pitch or materials that peel easily. 	 Complex machining programming. Difficult to change cutting depth. (Re-programming necessary) Chip control is difficult. 						


Threading depth

	Feat	tures		
	Advantages	Disadvantages		
V ₁ V ₂ V ₂ Fixed cut area	Easy to use. (Standard programme for threading.) Superior resistance to vibration. (Constant cutting force.)	 Long chips generated during the final pass. Complex calculation of cutting depth when changing the number of passes. 		
X ₁ =X ₂ X ₂ Fixed cutting depth	 Reduced load on nose radius during the first half of the passes. Easy chip control. (Optional setting of chip thickness) Easy to calculate cutting depth when changing the number of passes. Good chip control. 	 Subject to vibration in the later stages of cutting. (Increased cutting force) In some cases, changing the NC programme is necessary. 		

^{*} It is recommended to set the depth of cut of the final pass to 0.05mm ~ 0.025mm. Large cutting depths can cause vibration, leading to a poor surface finish.

Formulae

Formulae to calculate infeed for each pass in a reduced series.

Example) External threading (ISO metric)

Pitch: 1.0mm
ap: 0.6mm
$$n_{ap}: 5$$

1st pass $\triangle ap_1 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{0.3} = 0.16 \rightarrow \textbf{0.16} \ (\triangle ap_1)$

2nd pass $\triangle ap_2 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{2-1} = 0.3 \rightarrow \textbf{0.14} \ (\triangle ap_2 - \triangle ap_1)$

3rd pass $\triangle ap_3 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{3-1} = 0.42 \rightarrow \textbf{0.12} \ (\triangle ap_3 - \triangle ap_2)$

4th pass $\triangle ap_4 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{4-1} = 0.52 \rightarrow \textbf{0.1} \ (\triangle ap_4 - \triangle ap_3)$

5th pass $\triangle ap_5 = \frac{0.60}{\sqrt{5-1}} \times \sqrt{5-1} = 0.6 \rightarrow \textbf{0.08} \ (\triangle ap_5 - \triangle ap_4)$

NC Programme for Modified Flank Infeed

Example:- M12×1.0 5 passes modified 1°-3°

External Threading	Internal Treading
G00 Z = 5.0	G00 Z = 5.0
X = 14.0	X = 10.0
G92 U-4.34 Z-13.0 F1.0	G92 U4.34 Z-13.0 F1.0
G00 W - 0.07	G00 W - 0.07
G92 U-4.64 Z-13.0 F1.0	G92 U4.64 Z-13.0 F1.0
G00 W - 0.06	G00 W - 0.05
G92 U-4.88 Z-13.0 F1.0	G92 U4.84 Z-13.0 F1.0
G00 W - 0.05	G00 W - 0.04
G92 U-5.08 Z-13.0 F1.0	G92 U5.02 Z-13.0 F1.0
G00 W - 0.03	G00 W - 0.03
G92 U-5.20 Z-13.0 F1.0	G92 U5.14 Z-13.0 F1.0
G00	G00

Recommended Cutting Methods and Conditions

Selecting cutting conditions

				Prid	ority		
		Tool life	Cutting force	Surface finish	Precision of thread	Chips discharge	Efficiency (Reduced passes)
Threading	Radial	0		0	0		0
methods	Flank	(△: Modified)	0	(△: Modified)		0	
Cutting depth	Fixed cutting depth					0	
	Fixed cut area	0	0	0	0		0

^{*} Tool life and surface finish accuracy can be increased by changing the threading method from flank infeed to modified flank infeed.

Cutting depth and the number of passes

Selection of the appropriate cutting depth and the correct number of passes is vital for threading.

- For most threading, use a "threading cycle program," which has originally been installed on machines, and specify "total cutting depth" and "cutting depth in the first or final pass."
- Cutting depth and the number of passes are easy to change for the radial infeed method, thus making it easy to determine the appropriate cutting conditions.

Features and benefits of Mitsubishi products

 Insert grades with high wear and plastic deformation resistance, specially produced for threading tools, ensure highly efficient cutting by enabling high-speed machining and a reduced number of passes.

Advice on improved threading

Increasing tool life

- To prevent damage to the nose radius -Recommended method - Modified flank infeed.
- To have uniform flank wear on both sides of a cutting edge -Recommended method - Radial infeed
- · To prevent crater wear Recommended method - Flank infeed

Preventing chip problems

- · Change to flank or modified infeed.
- During radial infeed cutting, use an inverted holder and change the coolant supply to a downward direction.
- When using the radial infeed method, set the minimum cutting depth at around 0.2mm to make the chips thicker.
- Tangled chips during internal threading can damage the insert. In these cases, pause slightly away from the start point and clear the chips with coolant before every pass.
- · Change to M-class inserts with a 3-D chip breaker.

To achieve highly efficient machining

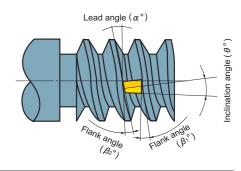
- Increase cutting speed. (Dependant on the maximum revolution and rigidity of the machine.)
- · Reduce the number of passes. (Reduce by 30-40%.)
- · A reduced number of passes can improve chip discharge because of the thicker chips generated.

Preventing vibration

- · Change to flank or modified infeed.
- When using radial infeed, reduce cutting depth in the later half of passes and lower the cutting speed.

Increased surface finish accuracy

- A final wiping pass should be performed at the same depth of cut as the last regular pass.
- When using the flank infeed method, change to radial infeed only during the final pass.

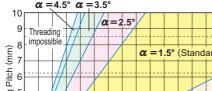

^{*} Chip control can be improved by increasing the cutting depth in the later half of passes.

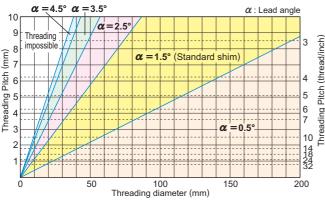
Selecting a shim for the MMT Series

Flank angle and lead angle

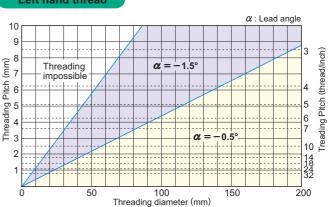
Lead angle (α) depends on a combination of thread diameter and pitch.

Select a shim so that the lead angle of the thread can coincide with the flank angles of the thread and insert (β_1 , β_2). No need to change a shim for general threading with an MMT holder. When threading with a small diameter or large pitch, change the shim depending on the lead angle, referring to the table and graph below. When threading left hand threads, change to a shim with a negative inclination angle.


Shim reference table (Threading diameter)


Lead Angle			Right Hand	Thread (mm)			L	eft Hand Thread (mr	n)
Pitch (mm)	Threading impossible	4.5°	3.5°	2.5°	1.5°	0.5°	Threading impossible	-1.5°	-0.5°
0.5	≤ ø 1.9	ϕ 1.9 - ϕ 2.2	$\phi 2.2 - \phi 2.8$	$\phi 2.8 - \phi 4.3$	$\phi 4.3 - \phi 11.4$	≥ <i>ф</i> 11.4	$\leq \phi 4.3$	$\phi 4.3 - \phi 11.4$	≥ <i>φ</i> 11.4
0.75	$\leq \phi 2.9$	$\phi 2.9 - \phi 3.2$	$\phi 3.2 - \phi 4.3$	$\phi 4.3 - \phi 6.5$	ϕ 6.5 $ \phi$ 17.1	$\geq \phi 17.1$	$\leq \phi 6.5$	$\phi 6.5 - \phi 17.1$	$\geq \phi$ 17.1
1	$\leq \phi 3.8$	ϕ 3.8 - ϕ 4.3	$\phi 4.3 - \phi 5.7$	$\phi 5.7 - \phi 8.7$	$\phi 8.7 - \phi 22.8$	$\geq \phi$ 22.8	$\leq \phi 8.7$	$\phi 8.7 - \phi 22.8$	$\geq \phi$ 22.8
1.25	$\leq \phi 4.8$	$\phi 4.8 - \phi 5.4$	$\phi 5.4 - \phi 7.1$	ϕ 7.1 $-\phi$ 10.9	ϕ 10.9 - ϕ 28.5	$\geq \phi 28.5$	$\leq \phi 10.9$	ϕ 10.9 - ϕ 28.5	$\geq \phi 28.5$
1.5	$\leq \phi 5.7$	$\phi 5.7 - \phi 6.5$	$\phi 6.5 - \phi 8.5$	ϕ 8.5 $-\phi$ 13.0	ϕ 13.0 - ϕ 34.2	$\geq \phi 34.2$	$\leq \phi 13.0$	ϕ 13.0 - ϕ 34.2	$\geq \phi 34.2$
1.75	$\leq \phi 6.7$	ϕ 6.7 - ϕ 7.6	ϕ 7.6 - ϕ 9.9	ϕ 9.9 $-\phi$ 15.2	ϕ 15.2 - ϕ 39.9	$\geq \phi 39.9$	$\leq \phi 15.2$	ϕ 15.2 - ϕ 39.9	$\geq \phi 39.9$
2	$\leq \phi 7.6$	ϕ 7.6 - ϕ 8.6	ϕ 8.6 $-\phi$ 11.4	ϕ 11.4 $-\phi$ 17.4	ϕ 17.4 $ \phi$ 45.6	$\geq \phi 45.6$	$\leq \phi 17.4$	ϕ 17.4 - ϕ 45.6	$\geq \phi 45.6$
2.5	$\leq \phi 9.5$	ϕ 9.5 $-\phi$ 10.8	ϕ 10.8 $-\phi$ 14.2	ϕ 14.2 $-\phi$ 21.7	$\phi 21.7 - \phi 57.0$	$\geq \phi$ 57.0	$\leq \phi 21.7$	$\phi 21.7 - \phi 57.0$	$\geq \phi$ 57.0
3	$\leq \phi 11.4$	ϕ 11.4 $-\phi$ 13.0	ϕ 13.0 $-\phi$ 17.0	ϕ 17.0 $-\phi$ 26.0	$\phi 26.0 - \phi 68.4$	$\geq \phi 68.4$	$\leq \phi 26.0$	$\phi 26.0 - \phi 68.4$	$\geq \phi 68.4$
3.5	$\leq \phi 13.3$	ϕ 13.3 $-\phi$ 15.1	ϕ 15.1 $-\phi$ 19.9	ϕ 19.9 $-\phi$ 30.4	$\phi 30.4 - \phi 79.8$	$\geq \phi$ 79.8	$\leq \phi 30.4$	ϕ 30.4 - ϕ 79.8	$\geq \phi$ 79.8
4	≤ <i>ф</i> 15.2	ϕ 15.2 $-\phi$ 17.3	ϕ 17.3 $-\phi$ 22.7	ϕ 22.7 $-\phi$ 34.7	ϕ 34.7 $ \phi$ 91.2	$\geq \phi 91.2$	≤ ϕ 34.7	ϕ 34.7 $ \phi$ 91.2	$\geq \phi 91.2$
4.5	≤ <i>φ</i> 17.1	ϕ 17.1 $-\phi$ 19.4	ϕ 19.4 $-\phi$ 25.6	ϕ 25.6 $-\phi$ 39.1	ϕ 39.1 $-\phi$ 102.6	$\geq \phi 102.6$	$\leq \phi 39.1$	ϕ 39.1 $-\phi$ 102.6	≥ \phi 102.6
5	≤ <i>ф</i> 19.0	ϕ 19.0 $-\phi$ 21.6	ϕ 21.6 $-\phi$ 28.4	ϕ 28.4 $-\phi$ 43.4	ϕ 43.4 $-\phi$ 114.0	$\geq \phi 114.0$	$\leq \phi 43.4$	ϕ 43.4 $-\phi$ 114.0	≥ <i>φ</i> 114.0

(Note) Back turning in the case of left hand threads.


Shim reference graph

Right hand thread

Left hand thread

Note) When a thread lead angle ≤ the tool flank angle, change the shim to prevent side interference with the insert. (Refer to the table below for the calculation of thread lead angle and tool flank angle.)

When replacing a shim, check if the difference between the thread lead angle and shim inclination angle is within:2.5° - 0.5° where thread helix angle is 60° (55°) 2° - 1° where thread helix angle is 30° (29°)

- * Inclination angle of a standard shim is 0°.
- * The holder has a 1.5 ° lead angle.

Example of selecting a shim

- · When the thread lead angle is 2.2°
- ①In the case when the thread helix angle is 60°
 - $(2.2^{\circ} \text{ lead angle}) (2.5^{\circ} 0.5^{\circ}) = -0.3^{\circ} 1.7^{\circ} \text{ shim inclination angle is appropriate.}$ Threading with a standard shim (0° inclination angle) is possible. But, replacing with a shim with a 1° inclination angle is recommended, refer to Standard Shim List on pages 9 and 10.
- 2In the case when the thread helix angle is 30°
 - $(2.2^{\circ} \text{ lead angle}) (2^{\circ} 1^{\circ}) = 0.2^{\circ} 1.2^{\circ} \text{ shim inclination angle is appropriate.}$ Replacing with a shim with a 1° inclination angle is recommended, referring to Standard Shim List on pages 9 and 10.

Calculation of thread lead angle

$$\tan \alpha = \frac{1}{\pi d} = \frac{nP}{\pi d}$$

- α: Lead angle
- I: Lead
- n : Number of threads
- Р · Pitch
- d : Effective diameter of thread

Relief angle of an insert set on a holder

Thread helix angle	Internal relief angle	External relief angle
60°	8.5°	6°
55°	7°	7°
30°	4°	2.5°
29°	4°	2.5°

· Relief angles (β_2 , β_1) of an insert become small when the thread helix angle of a trapezoidal, round, or other thread is small. Take care when selecting a shim.

Standard of depth of cut (External threading)

EXTERNAL (RADIAL INFEED)

ISO Metric

Pitch	Total						Νι	umber o	of Pass	es						Insert	Туре
(mm)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts	M-class inserts with 3-D chip breakers
0.5	0.31	0.10	0.08	0.07	0.06											MMT16ER050ISO	-
0.75	0.46	0.16	0.14	0.10	0.06											16ER075ISO	_
1.0	0.61	0.18	0.15	0.12	0.10	0.06										16ER100ISO	MMT16ER100ISO-S
1.25	0.77	0.19	0.17	0.14	0.11	0.10	0.06									16ER125ISO	16ER125ISO-S
1.5	0.92	0.22	0.21	0.17	0.14	0.12	0.06									16ER150ISO	16ER150ISO-S
1.75	1.07	0.22	0.21	0.16	0.13	0.11	0.09	0.09	0.06							16ER175ISO	16ER175ISO-S
2.0	1.23	0.24	0.23	0.17	0.16	0.14	0.12	0.11	0.06							16ER200ISO	16ER200ISO-S
2.5	1.53	0.26	0.23	0.19	0.17	0.15	0.13	0.12	0.11	0.11	0.06					16ER250ISO	16ER250ISO-S
3.0	1.84	0.27	0.25	0.20	0.18	0.16	0.14	0.13	0.12	0.12	0.11	0.10	0.06			16ER300ISO	16ER300ISO-S
3.5	2.15	0.33	0.30	0.24	0.21	0.18	0.17	0.15	0.14	0.14	0.12	0.11	0.06			22ER350ISO	-
4.0	2.45	0.34	0.31	0.24	0.22	0.19	0.17	0.16	0.14	0.14	0.13	0.12	0.12	0.11	0.06	22ER400ISO	_
4.5	2.76	0.38	0.34	0.28	0.24	0.22	0.20	0.18	0.16	0.16	0.15	0.14	0.13	0.12	0.06	22ER450ISO	_
5.0	3.07	0.42	0.38	0.32	0.27	0.24	0.22	0.20	0.18	0.18	0.17	0.16	0.15	0.12	0.06	22ER500ISO	_

American UN

Pitch	Total						Nu	umber o	of Pass	es						Insert	Туре
inch)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts	M-class inserts with 3-D chip breakers
32	0.49	0.17	0.15	0.11	0.06											MMT16ER320UN	-
28	0.56	0.17	0.14	0.10	0.09	0.06										16ER280UN	_
24	0.65	0.18	0.16	0.14	0.11	0.06										16ER240UN	_
20	0.78	0.20	0.18	0.13	0.11	0.10	0.06									16ER200UN	-
18	0.87	0.22	0.20	0.15	0.13	0.11	0.06									16ER180UN	_
16	0.97	0.22	0.20	0.15	0.12	0.11	0.11	0.06								16ER160UN	MMT16ER160UN-S
14	1.11	0.23	0.21	0.16	0.13	0.11	0.11	0.10	0.06							16ER140UN	16ER140UN-S
13	1.20	0.25	0.22	0.17	0.14	0.13	0.12	0.11	0.06							16ER130UN	-
12	1.30	0.28	0.23	0.18	0.16	0.14	0.13	0.12	0.06							16ER120UN	MMT16ER120UN-S
11	1.42	0.28	0.23	0.19	0.16	0.14	0.13	0.12	0.11	0.06						16ER110UN	-
10	1.56	0.28	0.24	0.19	0.16	0.14	0.13	0.13	0.12	0.11	0.06					16ER100UN	_
9	1.73	0.34	0.29	0.22	0.17	0.15	0.14	0.13	0.12	0.11	0.06					16ER090UN	-
8	1.95	0.35	0.30	0.24	0.19	0.16	0.15	0.14	0.13	0.12	0.11	0.06				16ER080UN	_
7	2.22	0.37	0.33	0.28	0.24	0.20	0.17	0.16	0.15	0.14	0.12	0.06				22ER070UN	-
6	2.60	0.42	0.35	0.29	0.25	0.21	0.18	0.17	0.16	0.15	0.13	0.12	0.11	0.06		22ER060UN	_
5	3.12	0.43	0.39	0.31	0.27	0.24	0.22	0.20	0.19	0.19	0.18	0.17	0.15	0.12	0.06	22ER050UN	_

Whitworth for BSW, BSP

Pitch	Total						Νι	umber o	of Pass	es						Insert	Туре
inch)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts	M-class inserts with 3-D chip breakers
28	0.58	0.17	0.14	0.11	0.10	0.06										MMT16ER280W	-
26	0.63	0.18	0.15	0.13	0.11	0.06										16ER260W	-
20	0.81	0.20	0.18	0.14	0.12	0.11	0.06									16ER200W	_
19	0.86	0.21	0.19	0.15	0.13	0.12	0.06									16ER190W	MMT16ER190W-S
18	0.90	0.25	0.19	0.15	0.13	0.12	0.06									16ER180W	_
16	1.02	0.21	0.18	0.15	0.13	0.11	0.09	0.09	0.06							16ER160W	-
14	1.16	0.23	0.21	0.17	0.14	0.12	0.12	0.11	0.06							16ER140W	MMT16ER140W-S
12	1.36	0.27	0.25	0.20	0.16	0.15	0.14	0.13	0.06							16ER120W	-
11	1.48	0.27	0.24	0.20	0.17	0.15	0.14	0.13	0.12	0.06						16ER110W	MMT16ER110W-S
10	1.63	0.27	0.25	0.20	0.17	0.15	0.15	0.13	0.13	0.12	0.06					16ER100W	-
9	1.81	0.28	0.26	0.21	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.06				16ER090W	-
8	2.03	0.30	0.27	0.22	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.06			16ER080W	-
7	2.32	0.34	0.32	0.26	0.22	0.20	0.18	0.17	0.16	0.15	0.14	0.12	0.06			22ER070W	_
6	2.71	0.35	0.33	0.27	0.23	0.21	0.20	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.06	22ER060W	-
5	3.25	0.42	0.40	0.35	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17	0.15	0.12	0.06	22ER050W	_

[·] Please note the cutting depth and the number of passes when a nose radius of a partial form insert or of an internal threading insert is small to

prevent damage to the insert nose.

Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

BSPT

Pitch	Total					Numb	er of P	asses				Insert	t Type
	Cutting Depth	1	2	3	4	5	6	7	8	9		G-class grinding inserts	M-class inserts with 3-D chip breakers
28	0.58	0.17	0.14	0.11	0.10	0.06						MMT16ER280BSPT	_
19	0.86	0.22	0.19	0.15	0.12	0.12	0.06					16ER190BSPT	MMT16ER190BSPT-S
14	1.16	0.24	0.20	0.17	0.14	0.12	0.12	0.11	0.06			16ER140BSPT	16ER140BSPT-S
11	1.48	0.25	0.23	0.21	0.18	0.16	0.14	0.13	0.12	0.06		16ER110BSPT	16ER110BSPT-S

Round DIN 405

Pitch (thread/	Total Cutting						Νι	ımber d	of Pass	es						Insert Type
	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
10	1.27	0.23	0.21	0.20	0.19	0.16	0.12	0.10	0.06							MMT16ER100RD
8	1.59	0.23	0.21	0.20	0.19	0.18	0.16	0.14	0.12	0.10	0.06					16ER080RD
6	2.12	0.26	0.25	0.24	0.22	0.21	0.19	0.17	0.16	0.14	0.12	0.10	0.06			16ER060RD
4	3.18	0.34	0.33	0.32	0.30	0.28	0.26	0.24	0.22	0.20	0.19	0.17	0.15	0.12	0.06	22ER040RD

ISO Trapezoidal 30°

Pitch	Total Cutting						Νι	umber o	of Pass	es						Insert Type
(mm)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
1.5	0.90	0.23	0.21	0.16	0.13	0.11	0.06									MMT16ER150TR
2.0	1.25	0.29	0.26	0.21	0.17	0.14	0.12	0.06								16ER200TR
3.0	1.75	0.32	0.31	0.24	0.19	0.18	0.17	0.15	0.13	0.06						16ER300TR
4.0	2.25	0.33	0.32	0.24	0.22	0.21	0.17	0.16	0.15	0.14	0.13	0.12	0.16			22ER400TR
5.0	2.75	0.35	0.32	0.26	0.24	0.22	0.21	0.19	0.19	0.17	0.15	0.14	0.13	0.12	0.06	22ER500TR

American ACME

Pitch							Νι	umber o	of Pass	es						Insert Type
	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
12	1.19	0.27	0.23	0.20	0.17	0.14	0.12	0.06								MMT16ER120ACME
10	1.52	0.29	0.25	0.21	0.18	0.16	0.14	0.12	0.11	0.06						16ER100ACME
8	1.84	0.30	0.26	0.22	0.19	0.16	0.15	0.14	0.13	0.12	0.11	0.06				16ER080ACME
6	2.37	0.34	0.30	0.27	0.24	0.21	0.19	0.16	0.14	0.12	0.12	0.11	0.11	0.06		22ER060ACME
5	2.79	0.36	0.33	0.30	0.26	0.23	0.20	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.06	22ER050ACME

UNJ

Pitch	Total Cutting						Nı	umber o	of Pass	es					Insert Type
inch)	Depth	1	2	3	4	5	6	7	8	9	10	11			G-class grinding inserts
32	0.46	0.16	0.14	0.10	0.06										MMT16ER320UNJ
28	0.52	0.16	0.12	0.09	0.09	0.06									16ER280UNJ
24	0.61	0.17	0.14	0.14	0.10	0.06									16ER240UNJ
20	0.73	0.19	0.16	0.13	0.10	0.09	0.06								16ER200UNJ
18	0.81	0.23	0.18	0.14	0.10	0.10	0.06								16ER180UNJ
16	0.92	0.26	0.21	0.14	0.12	0.10	0.09								16ER160UNJ
14	1.05	0.26	0.23	0.17	0.12	0.11	0.10	0.06							16ER140UNJ
12	1.22	0.28	0.27	0.20	0.17	0.13	0.11	0.06							16ER120UNJ
10	1.47	0.30	0.29	0.21	0.15	0.13	0.12	0.11	0.10	0.06					16ER100UNJ
8	1.83	0.31	0.30	0.23	0.18	0.15	0.14	0.13	0.12	0.11	0.10	0.06			16ER080UNJ

■API Buttress Casing

Pitch (thread/	Total						Nι	ımber c	of Pass	es					Insert Type
inch)	Depth	1	2	3	4	5	G-class grinding inserts								
5	1.55	0.25	0.23	0.17	0.15	0.13	0.12	0.12	0.11	0.11	0.10	0.06			MMT22ER050APBU

Please note the cutting depth and the number of passes when a nose radius of a partial form insert or of an internal threading insert is small to prevent damage to the insert nose.

Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

Standard of depth of cut (External threading)

EXTERNAL (RADIAL INFEED)

■ API Round Casing & Tubing

Pitch (thread/	Total						Nı	umber o	of Pass	es					Insert Type
	Depth		2	3	4	5	6	7	8	9	10	11	12		G-class grinding inserts
10	1.41	0.25	0.23	0.16	0.14	0.12	0.12	0.12	0.11	0.10	0.06				MMT16ER100APRD
8	1.81	0.25	0.24	0.19	0.16	0.14	0.14	0.13	0.13	0.13	0.13	0.11	0.06		16ER080APRD

American NPT

Pitch (thread/	Total						Νι	umber o	of Pass	es							Insert Type
	Depth		2	3	4	5	6	7	8	9	10	11	12	13	14	15	G-class grinding inserts
27	0.66	0.15	0.13	0.12	0.11	0.09	0.06										MMT16ER270NPT
18	1.01	0.20	0.16	0.14	0.13	0.12	0.11	0.09	0.06								16ER180NPT
14	1.33	0.23	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.06						16ER140NPT
11.5	1.64	0.24	0.19	0.17	0.15	0.15	0.13	0.13	0.12	0.11	0.10	0.09	0.06				16ER115NPT
8	2.42	0.33	0.28	0.23	0.20	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10	0.06	16ER080NPT

American NPTF

Pitch (thread/	Total Cutting						Nι	ımber o	of Pass	es							Insert Type
inch)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	G-class grinding inserts
27	0.64	0.16	0.14	0.11	0.09	0.08	0.06										MMT16ER270NPTF
18	1.00	0.19	0.16	0.14	0.13	0.12	0.11	0.09	0.06								16ER180NPTF
14	1.35	0.23	0.21	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.06						16ER140NPTF
11.5	1.63	0.24	0.23	0.19	0.15	0.13	0.11	0.11	0.11	0.10	0.10	0.10	0.06				16ER115NPTF
8	2.38	0.32	0.27	0.23	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10	0.06	16ER080NPTF

[·] Please note the cutting depth and the number of passes when a nose radius of a partial form insert or of an internal threading insert is small to prevent damage to the insert nose.

[·] Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

Standard of depth of cut (Internal threading)

INTERNAL (RADIAL INFEED)

ISO Metric

Pitch	Total						Nu	mber o	of Pass	ses							Inser	t Type	
(mm)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grin	nding inserts		nserts with breakers
0.5	0.29	0.09	0.07	0.07	0.06											MMT11IR050ISO	MMT16IR050ISO	_	_
0.75	0.43	0.15	0.13	0.09	0.06											11IR075ISO	16IR075ISO	_	_
1.0	0.58	0.17	0.15	0.11	0.09	0.06										11IR100ISO	16IR100ISO	MMT11IR100ISO-S	MMT16IR100ISO-S
1.25	0.72	0.18	0.16	0.12	0.11	0.09	0.06									11IR125ISO	16IR125ISO	11IR125ISO-S	16IR125ISO-S
1.5	0.87	0.21	0.20	0.16	0.13	0.11	0.06									11IR150ISO	16IR150ISO	11IR150ISO-S	16IR150ISO-S
1.75	1.01	0.21	0.20	0.15	0.12	0.10	0.09	0.08	0.06							11IR175ISO	16IR175ISO	_	16IR175ISO-S
2.0	1.15	0.24	0.22	0.18	0.14	0.12	0.10	0.09	0.06							11IR200ISO	16IR200ISO	_	16IR200ISO-S
2.5	1.44	0.25	0.24	0.21	0.15	0.13	0.12	0.10	0.09	0.09	0.06					_	16IR250ISO	_	16IR250ISO-S
3.0	1.73	0.26	0.25	0.22	0.17	0.14	0.13	0.12	0.11	0.10	0.09	0.08	0.06			_	16IR300ISO	_	16IR300ISO-S
3.5	2.02	0.32	0.30	0.23	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.10	0.06			_	22IR350ISO	_	_
4.0	2.31	0.33	0.31	0.24	0.22	0.18	0.15	0.14	0.13	0.12	0.12	0.11	0.10	0.10	0.06	_	22IR400ISO	_	_
4.5	2.60	0.36	0.33	0.28	0.24	0.21	0.19	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.06	_	22IR450ISO	_	_
5.0	2.89	0.41	0.38	0.32	0.27	0.24	0.21	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.06	_	22IR500ISO	_	_

American UN

Aille	oa																	
Pitch	Total						Nu	mber o	of Pas	ses							Insert Type	
(thread/ inch)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grin	ding inserts	M-class inserts with 3-D chip breakers
32	0.46	0.16	0.14	0.10	0.06											MMT11IR320UN	MMT16IR320UN	_
28	0.52	0.16	0.13	0.09	0.08	0.06										11IR280UN	16IR280UN	_
24	0.61	0.17	0.15	0.13	0.10	0.06										11IR240UN	16IR240UN	_
20	0.73	0.18	0.15	0.13	0.11	0.10	0.06									11IR200UN	16IR200UN	_
18	0.81	0.20	0.18	0.14	0.12	0.11	0.06									11IR180UN	16IR180UN	_
16	0.92	0.20	0.18	0.15	0.12	0.11	0.10	0.06								11IR160UN	16IR160UN	MMT16IR160UN-S
14	1.05	0.21	0.18	0.15	0.13	0.11	0.11	0.10	0.06							11IR140UN	16IR140UN	16IR140UN-S
13	1.13	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.06							_	16IR130UN	_
12	1.22	0.24	0.22	0.18	0.16	0.13	0.12	0.11	0.06							_	16IR120UN	MMT16IR120UN-S
11	1.33	0.24	0.22	0.20	0.15	0.12	0.12	0.11	0.11	0.06						_	16IR110UN	_
10	1.47	0.25	0.22	0.21	0.14	0.13	0.12	0.12	0.11	0.11	0.06					_	16IR100UN	_
9	1.63	0.31	0.23	0.21	0.17	0.15	0.14	0.13	0.12	0.11	0.06					_	16IR090UN	_
8	1.83	0.31	0.26	0.21	0.18	0.16	0.15	0.14	0.13	0.12	0.11	0.06				_	16IR080UN	_
7	2.09	0.36	0.30	0.24	0.21	0.18	0.17	0.16	0.15	0.14	0.12	0.06				_	22IR070UN	_
6	2.44	0.40	0.33	0.25	0.23	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.11	0.06		_	22IR060UN	_
5	2.93	0.41	0.35	0.31	0.26	0.23	0.21	0.20	0.19	0.17	0.15	0.14	0.13	0.12	0.06	_	22IR050UN	_

Whitworth for BSW, BSP

Pitch							Nu	mber o	of Pass	ses							Insert Type	
(thread/ inch)	Cutting Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grin	ding inserts	M-class inserts with 3-D chip breakers
28	0.58	0.17	0.14	0.11	0.10	0.06										_	MMT16IR280W	_
26	0.63	0.18	0.15	0.13	0.11	0.06										_	16IR260W	_
20	0.81	0.20	0.18	0.14	0.12	0.11	0.06									_	16IR200W	_
19	0.86	0.21	0.19	0.15	0.13	0.12	0.06									MMT11IR190W	16IR190W	MMT16IR190W-S
18	0.90	0.25	0.19	0.15	0.13	0.12	0.06									_	16IR180W	_
16	1.02	0.21	0.18	0.15	0.13	0.11	0.09	0.09	0.06							_	16IR160W	_
14	1.16	0.23	0.21	0.17	0.14	0.12	0.12	0.11	0.06							MMT11IR140W	16IR140W	MMT16IR140W-S
12	1.36	0.27	0.25	0.20	0.16	0.15	0.14	0.13	0.06							_	16IR120W	16IR120W-S
11	1.48	0.27	0.24	0.20	0.17	0.15	0.14	0.13	0.12	0.06						_	16IR110W	_
10	1.63	0.27	0.25	0.20	0.17	0.15	0.15	0.13	0.13	0.12	0.06					_	16IR100W	_
9	1.81	0.28	0.26	0.21	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.06				_	16IR090W	_
8	2.03	0.30	0.27	0.22	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.06			_	16IR080W	_
7	2.32	0.34	0.32	0.26	0.22	0.20	0.18	0.17	0.16	0.15	0.14	0.12	0.06			_	22IR070W	_
6	2.71	0.35	0.33	0.27	0.23	0.21	0.20	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.06	_	22IR060W	_
5	3.25	0.42	0.40	0.35	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17	0.15	0.12	0.06	_	22IR050W	_

 ⁽Note) · Set the finishing allowance on a diameter at approx. 0.1mm when using a full form insert.
 · Please note the cutting depth and the number of passes when a nose radius of a partial form insert or of an internal threading insert is small to prevent damage to the insert nose.
 · Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

Standard of depth of cut (Internal threading)

INTERNAL (RADIAL INFEED)

BSPT

Pitch	Total						Nu	mber o	of Pass	ses					Insert Type	
	Cutting Depth		2	3	4	5	6	7	8	9				G-class grin	ding inserts	M-class inserts with 3-D chip breakers
19	0.86	0.22	0.19	0.15	0.12	0.12	0.06							MMT11IR190BSPT	MMT16IR190BSPT	MMT16IR190BSPT-S
14	1.16	0.24	0.20	0.17	0.14	0.12	0.12	0.11	0.06					11IR140BSPT	16IR140BSPT	16IR140BSPT-S
11	1.48	0.25	0.23	0.21	0.18	0.16	0.14	0.13	0.12	0.06				_	16IR110BSPT	16IR110BSPT-S

Round DIN 405

Pitch (thread/	Total Cutting						Nu	mber o	of Pass	ses						Insert Type
	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
10	1.27	0.23	0.21	0.20	0.19	0.16	0.12	0.10	0.06							MMT16IR100RD
8	1.59	0.23	0.21	0.20	0.19	0.18	0.16	0.14	0.12	0.10	0.06					16IR080RD
6	2.12	0.26	0.25	0.24	0.22	0.21	0.19	0.17	0.16	0.14	0.12	0.10	0.06			16IR060RD
4	3.18	0.34	0.33	0.32	0.30	0.28	0.26	0.24	0.22	0.20	0.19	0.17	0.15	0.12	0.06	22IR040RD

■ISO Trapezoidal 30°

Pitch	Total Cutting						Nu	mber o	of Pass	ses						Insert Type
(mm)	Depth	1	2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
1.5	0.90	0.23	0.21	0.16	0.13	0.11	0.06									MMT16IR150TR
2	1.25	0.29	0.26	0.21	0.17	0.14	0.12	0.06								16IR200TR
3	1.75	0.32	0.31	0.24	0.19	0.18	0.17	0.15	0.13	0.06						16IR300TR
4	2.25	0.33	0.32	0.24	0.22	0.21	0.17	0.16	0.15	0.14	0.13	0.12	0.06			22IR400TR
5	2.75	0.35	0.32	0.26	0.24	0.22	0.21	0.19	0.19	0.17	0.15	0.14	0.13	0.12	0.06	22IR500TR

American ACME

Pitch (thread/							Nu	mber c	of Pass	ses						Insert Type
	Depth		2	3	4	5	6	7	8	9	10	11	12	13	14	G-class grinding inserts
12	1.19	0.27	0.23	0.20	0.17	0.14	0.12	0.06								MMT16IR120ACME
10	1.52	0.29	0.25	0.21	0.18	0.16	0.14	0.12	0.11	0.06						16IR100ACME
8	1.84	0.30	0.26	0.22	0.19	0.16	0.15	0.14	0.13	0.12	0.11	0.06				16IR080ACME
6	2.37	0.34	0.30	0.27	0.24	0.21	0.19	0.16	0.14	0.12	0.12	0.11	0.11	0.06		22IR060ACME
5	2.79	0.36	0.33	0.30	0.26	0.23	0.20	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.06	22IR050ACME

■API Buttress Casing

Pitch	Total Cutting						Nu	mber o	of Pass	ses					Insert Type
	Depth	1	2	3	4	5	6	7	8	9	10	11			G-class grinding inserts
5	1.55	0.25	0.23	0.17	0.15	0.13	0.12	0.12	0.11	0.11	0.10	0.06			MMT22IR050APBU

■API Round Casing & Tubing

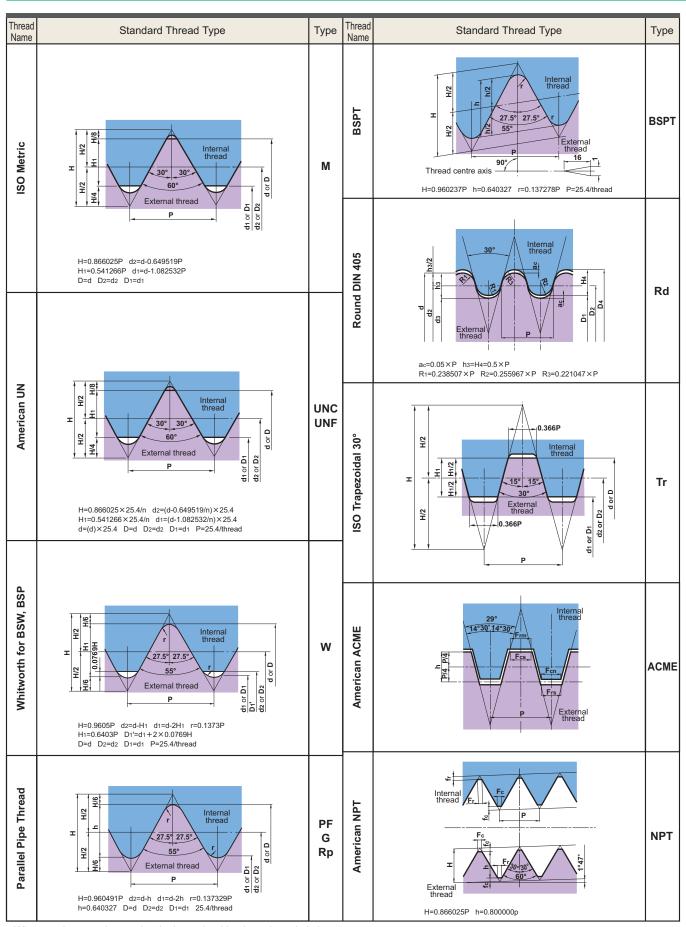
Pitch	Total Cutting						Nu	mber o	of Pass	ses					Insert Type
	Depth		2	3	4	5	6	7	8	9	10	11	12		G-class grinding inserts
10	1.41	0.25	0.23	0.16	0.14	0.12	0.12	0.12	0.11	0.10	0.06				MMT16IR100APRD
8	1.81	0.25	0.24	0.19	0.16	0.14	0.14	0.13	0.13	0.13	0.13	0.11	0.06		16IR080APRD

[·] Please note the cutting depth and the number of passes when a nose radius of a partial form insert or of an internal threading insert is small to prevent damage to the insert nose.

[·] Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature wear and chipping caused by the outer layer of the material.

American NPT

Pitch (thread/	Total Cutting	Number of Passes														Insert Type	
	Depth		2	3	4	5	6	7	8	9	10	11	12	13	14	15	G-class grinding inserts
27	0.66	0.15	0.13	0.12	0.11	0.09	0.06										MMT16IR270NPT
18	1.01	0.20	0.16	0.14	0.13	0.12	0.11	0.09	0.06								16IR180NPT
14	1.33	0.23	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.06						16IR140NPT
11.5	1.64	0.24	0.19	0.17	0.15	0.15	0.13	0.13	0.12	0.11	0.10	0.09	0.06				16IR115NPT
8	2.42	0.33	0.28	0.23	0.20	0.18	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10	0.06	16IR080NPT

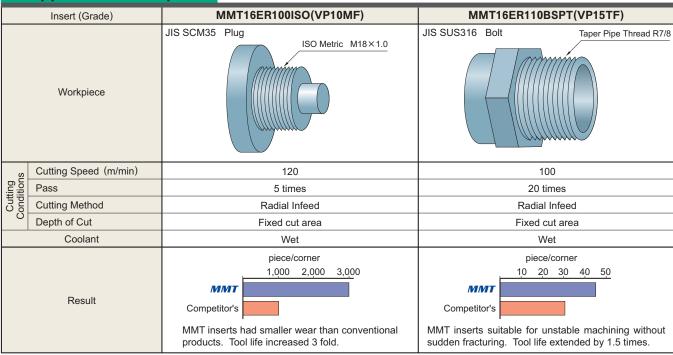

American NPTF

Pitch (thread/	Total Cutting Depth	Number of Passes												Insert Type			
inch)			2	3	4	5	6	7	8	9	10	11	12	13	14	15	G-class grinding inserts
14	1.35	0.23	0.21	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.06						MMT16IR140NPTF
11.5	1.63	0.24	0.23	0.19	0.15	0.13	0.11	0.11	0.11	0.10	0.10	0.10	0.06				16IR115NPTF
8	2.38	0.32	0.27	0.23	0.19	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10	0.06	16IR080NPTF

- Please note the cutting depth and the number of passes when a nose radius of a partial form insert or of an internal threading insert is small to prevent damage to the insert nose.

 Please set the cutting depth sufficiently deep enough on materials such as hardened steel or austenitic stainless steel to help prevent premature
- wear and chipping caused by the outer layer of the material.

STANDARD THREAD AND CORRESPONDING INSERT HOLDER



Wiper : Insert order number is determined by the selected pitch.

General: An insert is applicable to several pitch types.

Trou	ıbleshooting				
Problems	Observation	Causes	Solutions		
Low thread precision.	Threads do not mesh	Incorrect tool installation.	Set the insert centre height at 0mm.		
	with each other.		Check holder inclination (Lateral).		
	Shallow thread.	Incorrect depth of cut.	Modify the depth of cut.		
		Lack of insert wear or plastic deformation resistance.	Refer to "Quickly generated flank wear." and "Large plastic deformation." below.		
Poor surface finish.	Surface damage.	Chips wrap around or clog the work pieces.	Change to flank infeed and control the chip discharge direction.		
			Change to an M-class insert with a 3-D chip breaker.		
		The side of the insert cutting edge interferes with the workpiece.	Check the lead angle and select an appropriate shim.		
	Surface tears.	Built-up edge (Welding).	Increase cutting speed.		
			Increase coolant pressure and volume.		
		Cutting resistance too high.	Decrease depth of cut per pass.		
	Surface vibrations.	Cutting speed too high.	Decrease the cutting speed.		
		Insufficient work piece or tool clamping.	Re-check work piece and tool clamping. (Chuck pressure, clamping allowance)		
		Incorrect tool installation.	Set the insert centre height at 0mm.		
Short tool life.	Flank wear quickly	Cutting speed too high.	Decrease the cutting speed.		
	generated.	Too many passes causes abrasive wear.	Reduce the number of passes.		
		Small depth of cut for the finishing pass.	Do not re-cut at 0mm depth of cut, larger than 0.05mm depth of cut is recommended.		
	Non-uniform wear of the right and left sides of the cutting edge.	The work piece lead angle and the tool lead angle do not match.	Check the work piece lead angle and select an appropriate shim.		
	Chipping and fracture.	Cutting speed too low.	Increase cutting speed.		
		Cutting resistance too high.	Increase the number of passes and decrease the cutting resistance per pass.		
		Unstable clamping.	Check work piece deflection.		
			Shorten tool overhang.		
			Recheck work piece and tool clamping. (Chuck pressure, clamping allowance)		
		Chip packing.	Increase coolant pressure to blow away chips.		
			Change the tool pass to control chips. (Lengthen each pass to allow the coolant to clear the chips.		
			Change from standard internal cutting to back turning to prevent chip jamming.		
		Non-chamfered work pieces causes high resistance at the start of each pass.	Chamfer the workpiece entry and exit faces .		
	Large plastic	High cutting speed and large heat generation.	Decrease the cutting speed.		
	deformation.	Lack of coolant supply.	Check coolant is supply is sufficient.		
			Increase coolant pressure and volume.		
		Cutting resistance too high.	Increase the number of passes and decrease the cutting resistance per pass.		

Application example

	Insert (Grade)	MMT16ER150ISO-S(VP15TF)	MMT16ER150ISO-S(VP15TF)				
	Workpiece	JIS S45C Bolt ISO Metric M20×1.5	JIS SCM435 Bolt ISO Metric M12×1.5				
SL	Cutting Speed (m/min)	140	80				
Cutting Conditions	Pass	6 times	10 times				
Cut	Cutting Method	Radial Infeed	Radial Infeed				
	Depth of Cut	Fixed cut area	Fixed cut area				
	Coolant	Wet	Wet				
	Result	piece/corner 300 600 900 MMT Competitor's MMT inserts had better chip control and gave smaller burrs on incomplete threads compared to conventional products. 3 times longer tool life was possible.	piece/corner 50 100 150 MMT Competitor's Better chip control from the MMT inserts prevented chips wrapping around the workpiece. Tool life lengthened x 1.5				

For Your Safety

Do not touch cutting edges and chips without gloves.

Machine within the recommended conditions, and replace worn tools with new ones before breakage.

Use protectors such as safety covers and protective glasses. High-temperature chips can scatter and long chips can be discharged. Always take precautions against fire when using water-insoluble coolant. Clamp the inserts and parts firmly with the wrench or spanner provided.

MMC HARTMETALL GmbH

Comeniusstr. 2, 40670 Meerbusch, Germany Tel. +49-2159-91890 Fax +49-2159-918966 e-mail marketing@mmchg.de

MMC HARDMETAL U.K. LTD.

Mitsubishi House, Galena Close, Tamworth, B77 4AS, U.K. Tel. +44-1827-312312 Fax +44-1827-312314 e-mail sales@mitsubishicarbide.co.uk

MMC METAL FRANCE S.A.R.L.

6, rue Jacques Monod, 91893 Orsay Cedex, France Tel. +33-1-69 35 53 53 Fax +33-1-69 35 53 50 e-mail mmfsales@mmc-metal-france.fr

MITSUBISHI MATERIALS ESPAÑA, S.A.

C/Emperador 2, 46136 Museros, Valencia, Spain Tel. +34-96-144-1711 Fax +34-96-144-3786 e-mail mme@mmevalencia.com

MMC ITALIA S.r.I.

V.le delle Industrie 20/5, 20020 Arese (Mi) Tel. +39-02 93 77 03 1 Fax +39-02 93 58 90 93 e-mail info@mmc-italia.it

MMC HARDMETAL POLAND Sp. z o.o.

Armii Karjowej 61, Wroclaw, Poland Tel. +48-71-3351-620 Fax +48-71-3351-620 e-mail mmc@mhpl.pl

www.mitsubishicarbide.com

MITSUBISHI HARDMETAL RUSSIA 000 LTD. ul. Bolschaja Pochtovaja, d.36, str.1 105082 Moscow, Russia

Tel. +007-095-72558-85 Fax +007-095-72558-85 e-mail mmc-moscow@lescom.ru

